login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230207 Trapezoid of dot products of row 4 (signs alternating) with sequential 5-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 5-tuples (C(4,0), -C(4,1), C(4,2), -C(4,3), C(4,4)) and (C(n-1,k-4), C(n-1,k-3), C(n-1,k-2), C(n-1,k-1), C(n-1,k)), n >= 1, 0 <= k <= n+3. 3
1, -4, 6, -4, 1, 1, -3, 2, 2, -3, 1, 1, -2, -1, 4, -1, -2, 1, 1, -1, -3, 3, 3, -3, -1, 1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 1, -4, -4, 6, 6, -4, -4, 1, 1, 1, 2, -3, -8, 2, 12, 2, -8, -3, 2, 1, 1, 3, -1, -11, -6, 14, 14, -6, -11, -1, 3, 1, 1, 4, 2, -12, -17, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The array is trapezoidal rather than triangular because C(n,k) is not uniquely defined for all negative n and negative k.

Row sums are 0.

Coefficients of (x-1)^4 (x+1)^(n-1) for n > 0.

LINKS

G. C. Greubel, Rows n=1..50 of trapezoid, flattened

Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.

FORMULA

T(n,k) = Sum_{i=0..n+m-1} (-1)^(i+m)*C(m,i)*C(n-1,k-i), n >= 1, with T(n,0) = (-1)^m and m=4.

EXAMPLE

Trapezoid begins:

1, -4, 6, -4, 1;

1, -3, 2, 2, -3, 1;

1, -2, -1, 4, -1, -2, 1;

1, -1, -3, 3, 3, -3, -1, 1;

1, 0, -4, 0, 6, 0, -4, 0, 1;

1, 1, -4, -4, 6, 6, -4, -4, 1, 1;

1, 2, -3, -8, 2, 12, 2, -8, -3, 2, 1;

etc.

MATHEMATICA

Flatten[Table[CoefficientList[(x - 1)^4 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)

m=4; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 29 2018 *)

PROG

(PARI) m=4; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m, j)*binomial(n-1, k-j))), ", "))) \\ G. C. Greubel, Nov 29 2018

(Magma) m:=4; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m, j) *Binomial(n-1, k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 29 2018

(Sage) m=4; [[sum((-1)^(j+m)*binomial(m, j)*binomial(n-1, k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 29 2018

CROSSREFS

Using row j of the alternating Pascal triangle as generator: A007318 (j=0), A008482 and A112467 (j=1 after the first term in each), A182533 (j=2 after the first two rows), A230206 (j=3), A230208-A230212 (j=5 to j=9).

Sequence in context: A219234 A350481 A155675 * A277949 A244081 A279445

Adjacent sequences: A230204 A230205 A230206 * A230208 A230209 A230210

KEYWORD

easy,sign,tabf

AUTHOR

Dixon J. Jones, Oct 12 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:16 EST 2022. Contains 358588 sequences. (Running on oeis4.)