login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008482 Coefficients in expansion of (x-1)*(1+x)^(n-1), n > 0. 12
0, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Apart from initial term, same as A112467. - Philippe Deléham, Nov 07 2006

From Christopher Simoni, Feb 11 2019: (Start)

Along the diagonal containing all the natural numbers, where every number is at point T(n,n-1), T(n,k)^2 can be found by adding T(n+1,k), T(n,k-1), T(n-1,k), and T(n,k+1) together. Empirical observation.

Along the diagonal containing all the natural numbers, where every number is at point T(n,n-1), T(n,k)^3 can by found. The following products are added together: T(n-1,k-1)*T(n,k+1)*T(n+1,k); T(n-1,k)*T(n+1,k+1)*(n,k-1); and 3*T(n,k). Empirical observation. (End)

REFERENCES

A. A. Kirillov, Variations on the triangular theme, Amer. Math. Soc. Transl., (2), Vol. 169, 1995, pp. 43-73, see p. 71.

LINKS

G. C. Greubel, Rows n=0..100 of triangle, flattened

I. Gessel and S. Ree, Lattice paths and Faber polynomials, Advances in Combinatorial Methods and Applications to Probability and Statistics pp 3-13. DOI: 10.1007/978-1-4612-4140-9_1.

FORMULA

T(n, k) = T(n-1, k-1) + T(n-1, k); T(0, 0) = 0, T(1, 0) = -1, T(1, 1) = 1. - Michael Somos, Oct 04 1999

T(n, k) = binomial(n, k-1) - binomial(n, k). - Michael Somos, Oct 04 1999

T(2n+1,n+1) = A000108(n), Catalan numbers. - Philippe Deléham, Nov 29 2013

a(n) = -A037012(n). - Michael Somos, May 24 2015

T(n, k) = -T(n, n - k); T(n, n) = 1 except for n = 0; T(n+1, n) = n-1; T(n+2, n) = A000217(n-1) - 1. This proves the observations by C. Simoni, e.g., T(n+1,n)^2 - 1 = T(n+1,n-1) + T(n+2,n) + 1. - M. F. Hasler, Feb 11 2019

EXAMPLE

Triangle begins:

   0

  -1   1

  -1   0   1

  -1  -1   1    1

  -1  -2   0    2    1

  -1  -3  -2    2    3    1

  -1  -4  -5    0    5    4   1

  -1  -5  -9   -5    5    9   5   1

  -1  -6 -14  -14    0   14  14   6   1

  -1  -7 -20  -28  -14   14  28  20   7   1

  -1  -8 -27  -48  -42    0  42  48  27   8   1

  -1  -9 -35  -75  -90  -42  42  90  75  35   9   1

  -1 -10 -44 -110 -165 -132   0 132 165 110  44  10   1

... - Philippe Deléham, Nov 29 2013

MATHEMATICA

Table[Binomial[n-1, k-1] -Binomial[n-1, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2019 *)

PROG

(PARI) {T(n, k) = if( n<1, 0, polcoeff( (x-1) * (1+x)^(n-1), k))}; /* Michael Somos, Oct 04 1999 */

(PARI) A008482(n, k)={if(k>=n-k, if(k>n-k, -A008482(n, n-k), 0), k>2, A008482(n-1, k-1)+A008482(n-1, k), k>1, 1-(n-2)*(n-3)\2, k, 2-n, -1)} \\ M. F. Hasler, Feb 11 2019

(Sage) [0] + flatten([[binomial(n-1, k-1) -binomial(n-1, k) for k in (0..n)] for n in (1..12)]) # G. C. Greubel, Feb 11 2019

CROSSREFS

Skew analog of Pascal's triangle A007318, central column gives Catalan numbers A000108, essentially same as A037012, except rows are read from left to right (A037012 = - this sequence).

The positive half of this triangle is A008315. - Michael Somos

Sequence in context: A079627 A061398 A080232 * A037012 A112467 A112466

Adjacent sequences:  A008479 A008480 A008481 * A008483 A008484 A008485

KEYWORD

sign,easy,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 04:46 EDT 2019. Contains 321422 sequences. (Running on oeis4.)