login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112467 Riordan array ((1-2x)/(1-x), x/(1-x)). 22
1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -1, -10, -44, -110, -165, -132, 0, 132, 165, 110 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Row sums are A000007. Diagonal sums are -F(n-2). Inverse is A112468. T(2n,n)=0.

(-1,1)-Pascal triangle. - Philippe Deléham, Aug 07 2006

Apart from initial term, same as A008482. - Philippe Deléham, Nov 07 2006

Each column equals the cumulative sum of the previous column. - Mats Granvik, Mar 15 2010

Reading along antidiagonals generates in essence rows of A192174. - Paul Curtz, Oct 02 2011

Triangle T(n,k), read by rows, given by (-1,2,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2011

LINKS

Table of n, a(n) for n=0..87.

E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.

D. Foata, G-N. Han, The doubloon polynomial triangle, Ram. J. 23 (2010), 107-126

FORMULA

Number triangle T(n, k) = binomial(n, n-k) - 2*binomial(n-1, n-k-1);

Sum_{k=0..n} T(n, k)*x^k = (x-1)*(x+1)^(n-1). - Philippe Deléham, Oct 03 2005

t(j,n) = If[n == 0, 1, ((2*n - j + 1)/n)*Binomial[j - 2, n - 1]]. - Roger L. Bagula, Feb 16 2009

T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=-1, T(n,k)=0 for k>n or for n<0. - Philippe Deléham, Nov 01 2011

G.f.: (1-2x)/(1-(1+y)*x). - Philippe Deléham, Dec 15 2011

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A133494(n), A081294(n), A005053(n), A067411(n), A199661(n), A083233(n) for x = 1, 2, 3, 4, 5, 6, 7, respectively. - Philippe Deléham, Dec 15 2011

exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 - x + x^2/2! + x^3/3!) = -1 - 2*x - 2*x^2/2! + 5*x^4/4! + 14*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014

EXAMPLE

Triangle starts

  { 1},

  {-1,  1},

  {-1,  0,   1},

  {-1, -1,   1,   1},

  {-1, -2,   0,   2,   1},

  {-1, -3,  -2,   2,   3,   1},

  {-1, -4,  -5,   0,   5,   4,  1},

  {-1, -5,  -9,  -5,   5,   9,  5,  1},

  {-1, -6, -14, -14,   0,  14, 14,  6,  1},

  {-1, -7, -20, -28, -14,  14, 28, 20,  7,  1},

  {-1, -8, -27, -48, -42,   0, 42, 48, 27,  8, 1},

  {-1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1}

  ...

Production matrix begins

   1,  1,

  -2, -1,  1,

   2,  0, -1,  1,

  -2,  0,  0, -1,  1,

   2,  0,  0,  0, -1,  1,

  -2,  0,  0,  0,  0, -1,  1,

   2,  0,  0,  0,  0,  0, -1,  1

- Paul Barry, Apr 08 2011

MATHEMATICA

d[n_, j_] = If[n == 0, 1, ((2*n - j + 1)/n)*Binomial[j - 2, n - 1]]; Table[Table[d[n, j], {n, 0, j - 1}], {j, 1, 12}]; Flatten[%] (* Roger L. Bagula, Feb 16 2009 *)

CROSSREFS

Same first 3 rows as in A054525.

Cf. A008482, A037012, A112466, A080232, A112466, A112467, A174293, A174294, A174295, A174296, A174297.

Sequence in context: A080232 A008482 A037012 * A112466 A166348 A294658

Adjacent sequences:  A112464 A112465 A112466 * A112468 A112469 A112470

KEYWORD

easy,sign,tabl

AUTHOR

Paul Barry, Sep 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 22:56 EST 2018. Contains 299427 sequences. (Running on oeis4.)