login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037012 Triangle read by rows; row 0 is 0; the n-th row for n>0 contains the coefficients in the expansion of (1-x)*(1+x)^(n-1). 8
0, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 2, -2, -3, -1, 1, 4, 5, 0, -5, -4, -1, 1, 5, 9, 5, -5, -9, -5, -1, 1, 6, 14, 14, 0, -14, -14, -6, -1, 1, 7, 20, 28, 14, -14, -28, -20, -7, -1, 1, 8, 27, 48, 42, 0, -42, -48, -27, -8, -1, 1, 9, 35, 75, 90, 42, -42, -90 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

The greatest term in the row n is reached when k is the nearest integer to (n - sqrt(n+1))/2. When n is one less than a square, and consequently this formula gives a half-integer, the maximum is reached twice. - Ivan Neretin, Apr 26 2016

REFERENCES

A. A. Kirillov, Variations on the triangular theme, Amer. Math. Soc. Transl., (2), Vol. 169, 1995, pp. 43-73, see p. 71.

LINKS

Ivan Neretin, Table of n, a(n) for n = 0..5150

Tewodros Amdeberhan, Moa Apagodu, Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.

Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.

Pedro J. Miana, Hideyuki Ohtsuka, Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016 (see 1.2).

FORMULA

T(n, k) = T(n-1, k-1)+T(n-1, k); T(0, 0)=0, T(1, 0)=1, T(1, 1)=-1.

T(n, k) = C(n, k)-C(n, k-1) where C = binomial coefficient A007318.

G.f.: (1-y) / (1-x-x*y). - Ralf Stephan, Jan 23 2005

T(n,k) = binomial(n-1,k) - binomial(n-1,k-1), for n >= k. T(n,k)=0, for n < k. T(n,k) = Sum_{i=-k..k} (-1)^i*binomial(n-1,k+i)*binomial(n+1,k-i), for n > 0. Row sums are 0. - Mircea Merca, Apr 28 2012

a(n) = -A008482(n). - Michael Somos, May 24 2015

Sum of positive terms of the row n is the central binomial coefficient A001405(n-1).- Ivan Neretin, Apr 26 2016

T(n, n-k) = - T(n, k); T(n, 0) = 1; T(n, 1) = n-2; T(n, 2) = (n-3)(n-4)/2; T(2k,n) = 0; T(2k, k-1) = T(2k+1, k) = A000108(k). - M. F. Hasler, Feb 11 2019

EXAMPLE

Triangle begins:

0;

1, -1;

1, 0, -1;

1, 1, -1, -1;

1, 2, 0, -2, -1;

1, 3, 2, -2, -3, -1;

...

MAPLE

T(n, k):=piecewise(n<k, 0, k<=n, binomial(n-1, k)-binomial(n-1, k-1)) # Mircea Merca, Apr 28 2012

MATHEMATICA

T[ n_, k_] := If[ n < 1, 0, Coefficient[ (1 - x) (1 + x)^(n - 1), x, k]]; (* Michael Somos, May 24 2015 *)

Flatten@NestList[Join[{1}, Most@# + Rest@#, {-1}] &, {0}, 11] (* Ivan Neretin, Apr 26 2016 *)

PROG

(PARI) {T(n, k) = if( n<1, 0, polcoeff( (1-x) * (1+x)^(n-1), k))}

(PARI) A037012(n, k)={if(k>=n-k, if(k>n-k, -A037012(n, n-k)), k>2, A037012(n-1, k-1)+A037012(n-1, k), k>1, (n-2)*(n-3)\2-1, k, n-2, 1)} \\ M. F. Hasler, Feb 11 2019

CROSSREFS

Skew analog of Pascal's triangle A007318. Equals -A008482.

Elements near the center give Catalan numbers A000108 repeated, cf. formula.

Apart from initial initial term, same as A080232.

Sequence in context: A061398 A080232 A008482 * A112467 A112466 A166348

Adjacent sequences: A037009 A037010 A037011 * A037013 A037014 A037015

KEYWORD

sign,easy,tabl

AUTHOR

N. J. A. Sloane, Michael Somos

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 16:51 EST 2022. Contains 358588 sequences. (Running on oeis4.)