login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112466 Riordan array ((1+2x)/(1+x), x/(1+x)). 4
1, 1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 2, 0, -2, 1, 1, -3, 2, 2, -3, 1, -1, 4, -5, 0, 5, -4, 1, 1, -5, 9, -5, -5, 9, -5, 1, -1, 6, -14, 14, 0, -14, 14, -6, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, -1, 8, -27, 48, -42, 0, 42, -48, 27, -8, 1, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1, -1, 10, -44, 110, -165, 132, 0, -132, 165, -110, 44 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Row sums are (1,2,0,0,0,...).

Inverse is A112465.

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 07 2006; corrected by Philippe Deléham, Dec 11 2008

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)

Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.

E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.

FORMULA

Number triangle T(n,k) = (-1)^(n-k)*(C(n, n-k) - 2*C(n-1, n-k-1)).

Sum_{k=0..floor(n/2)} T(n-k,k) = (-1)^(n+1)*Fibonacci(n-2).

T(2n,n) = 0.

Sum_{k=0..n} T(n,k)*x^k = (x+1)*(x-1)^(n-1), for n >= 1. - Philippe Deléham, Oct 03 2005

T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if n < 0 or if n < k, T(n,k) = T(n-1,k-1) - T(n-1,k) for n > 1. - Philippe Deléham, Nov 26 2006

G.f.: (1+2*x)/(1+x-x*y). - R. J. Mathar, Aug 11 2015

EXAMPLE

Triangle starts

   1;

   1,  1;

  -1,  0,  1;

   1, -1, -1,  1;

  -1,  2,  0, -2,  1;

   1, -3,  2,  2, -3,  1;

  -1,  4, -5,  0,  5, -4,  1;

From Paul Barry, Apr 08 2011: (Start)

Production matrix begins

   1,  1;

  -2, -1,  1;

   2,  0, -1,  1;

  -2,  0,  0, -1,  1;

   2,  0,  0,  0, -1,  1;

  -2,  0,  0,  0,  0, -1,  1;

   2,  0,  0,  0,  0,  0, -1,  1; (End)

MAPLE

seq(seq( (-1)^(n-k)*(2*binomial(n-1, k-1)-binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Feb 19 2020

MATHEMATICA

{1}~Join~Table[(Binomial[n, n - k] - 2 Binomial[n - 1, n - k - 1])*(-1)^(n - k), {n, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 18 2020 *)

PROG

(PARI) T(n, k) = (-1)^(n-k)*(binomial(n, n-k) - 2*binomial(n-1, n-k-1)); \\ Michel Marcus, Feb 19 2020

CROSSREFS

Cf. A008482, A037012, A097808, A112467.

Sequence in context: A008482 A037012 A112467 * A166348 A294658 A127543

Adjacent sequences:  A112463 A112464 A112465 * A112467 A112468 A112469

KEYWORD

easy,sign,tabl

AUTHOR

Paul Barry, Sep 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 12:59 EST 2021. Contains 341762 sequences. (Running on oeis4.)