|
|
A112468
|
|
Riordan array (1/(1-x), x/(1+x)).
|
|
30
|
|
|
1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 0, 2, -2, 1, 1, 1, -2, 4, -3, 1, 1, 0, 3, -6, 7, -4, 1, 1, 1, -3, 9, -13, 11, -5, 1, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,13
|
|
COMMENTS
|
Row sums are A040000. Diagonal sums are A112469. Inverse is A112467. Row sums of k-th power are 1, k+1, k+1, k+1, .... Note that C(n,k) = Sum_{j=0..n-k} C(n-j-1, n-k-j).
Equals row reversal of triangle A112555 up to sign, where log(A112555) = A112555 - I. Unsigned row sums equals A052953 (Jacobsthal numbers + 1). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms. - Paul D. Hanna, Jan 20 2006
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively (see the square array in A112739). - Philippe Deléham, Feb 22 2014
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
H. Belbachir, F. Bencherif, On some properties of bivariate Fibonacci and Lucas Polynomials, JIS 11 (2008) 08.2.6.
Hacene Belbachir and Athmane Benmezai, Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question, Journal of Integer Sequences, Vol. 15 (2012), #12.7.6.
E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
H. Prodinger, On the expansion of Fibonacci and Lucas Polynomials, JIS 12 (2009) 09.1.6.
|
|
FORMULA
|
Triangle T(n,k) read by rows: T(n,0)=1, T(n,k) = T(n-1,k-1) - T(n-1,k). - Mats Granvik, Mar 15 2010
Number triangle T(n, k)= Sum_{j=0..n-k} C(n-j-1, n-k-j)*(-1)^(n-k-j).
G.f. of matrix power T^m: (1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x). G.f. of matrix log: x*(1-2*x*y+x^2*y)/(1-x*y)^2/(1-x). - Paul D. Hanna, Jan 20 2006
T(n, k) = R(n,n-k,-1) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)*hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014
|
|
EXAMPLE
|
Triangle starts
1;
1, 1;
1, 0, 1;
1, 1, -1, 1;
1, 0, 2, -2, 1;
1, 1, -2, 4, -3, 1;
1, 0, 3, -6, 7, -4, 1;
Matrix log begins:
0;
1, 0;
1, 0, 0;
1, 1, -1, 0;
1, 1, 1, -2, 0;
1, 1, 1, 1, -3, 0; ...
Production matrix begins
1, 1,
0, -1, 1,
0, 0, -1, 1,
0, 0, 0, -1, 1,
0, 0, 0, 0, -1, 1,
0, 0, 0, 0, 0, -1, 1,
0, 0, 0, 0, 0, 0, -1, 1.
- Paul Barry, Apr 08 2011
|
|
MAPLE
|
T := (n, k, m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k, k+1)*hypergeom( [1, n+1], [k+2], m)/(k+1)!; A112468 := (n, k) -> T(n, n-k, -1);
seq(print(seq(simplify(A112468(n, k)), k=0..n)), n=0..10); # Peter Luschny, Jul 25 2014
|
|
MATHEMATICA
|
T[n_, 0] = 1; T[n_, n_] = 1; T[n_, k_ ]:= T[n, k] = T[n-1, k-1] - T[n-1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
|
|
PROG
|
(PARI) {T(n, k)=local(m=1, x=X+X*O(X^n), y=Y+Y*O(Y^k)); polcoeff(polcoeff((1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x), n, X), k, Y)} \\ Paul D. Hanna, Jan 20 2006
(Haskell)
a112468 n k = a112468_tabl !! n !! k
a112468_row n = a112468_tabl !! n
a112468_tabl = iterate (\xs -> zipWith (-) ([2] ++ xs) (xs ++ [0])) [1]
-- Reinhard Zumkeller, Jan 03 2014
(PARI) T(n, k) = if(k==0 || k==n, 1, T(n-1, k-1) - T(n-1, k)); \\ G. C. Greubel, Nov 13 2019
(MAGMA)
function T(n, k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k-1) - T(n-1, k);
end if;
return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
(Sage)@CachedFunction
def T(n, k):
if (k<0 or n<0): return 0
elif (k==0 or k==n): return 1
else: return T(n-1, k-1) - T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
(GAP)
T:= function(n, k)
if k=0 or k=n then return 1;
else return T(n-1, k-1) - T(n-1, k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 13 2019
|
|
CROSSREFS
|
Cf. A174294, A174295, A174296, A174297. - Mats Granvik, Mar 15 2010
Cf. A072547 (central terms), A112555 (reversed rows), A112465, A052953, A112556, A112739, A119258.
See A279006 for another version.
Sequence in context: A085685 A267632 A112465 * A207194 A086275 A066855
Adjacent sequences: A112465 A112466 A112467 * A112469 A112470 A112471
|
|
KEYWORD
|
easy,sign,tabl
|
|
AUTHOR
|
Paul Barry, Sep 06 2005
|
|
STATUS
|
approved
|
|
|
|