The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230210 Trapezoid of dot products of row 7 (signs alternating) with sequential 8-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 8-tuples (C(7,0), -C(7,1), ..., C(7,6), -C(7,7)) and (C(n-1,k-7), C(n-1,k-6), ..., C(n-1,k)), n >= 1, 0 <= k <= n+6. 3
 -1, 7, -21, 35, -35, 21, -7, 1, -1, 6, -14, 14, 0, -14, 14, -6, 1, -1, 5, -8, 0, 14, -14, 0, 8, -5, 1, -1, 4, -3, -8, 14, 0, -14, 8, 3, -4, 1, -1, 3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1, -1, 2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1, -1, 1, 6, -6, -15 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The array is trapezoidal rather than triangular because C(n,k) is not uniquely defined for all negative n and negative k. Row sums are 0. Coefficients of (x-1)^7 (x+1)^(n-1), n > 0. LINKS G. C. Greubel, Rows n=1..50 of trapezoid, flattened Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4. FORMULA T(n,k) = Sum_{i=0..n+m-1} (-1)^(i+m)*C(m,i)*C(n-1,k-i), n >= 1, with T(n,0) = (-1)^m and m=7. EXAMPLE Trapezoid begins: -1, 7, -21, 35, -35, 21, -7, 1; -1, 6, -14, 14, 0, -14, 14, -6, 1; -1, 5, -8, 0, 14, -14, 0, 8, -5, 1; -1, 4, -3, -8, 14, 0, -14, 8, 3, -4, 1; -1, 3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1; -1, 2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1; -1, 1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1; etc. MATHEMATICA Flatten[Table[CoefficientList[(x - 1)^7 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *) m=7; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *) PROG (PARI) m=7; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m, j)*binomial(n-1, k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018 (Magma) m:=7; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m, j) *Binomial(n-1, k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018 (Sage) m=7; [[sum((-1)^(j+m)*binomial(m, j)*binomial(n-1, k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018 CROSSREFS Using row j of the alternating Pascal triangle as generator: A007318 (j=0), A008482 and A112467 (j=1 after the first term in each), A182533 (j=2 after the first two rows), A230206-A230209 (j=3 to j=6), A230211-A230212 (j=8 and j=9). Sequence in context: A015729 A271972 A001485 * A087111 A173676 A131893 Adjacent sequences: A230207 A230208 A230209 * A230211 A230212 A230213 KEYWORD easy,sign,tabf AUTHOR Dixon J. Jones, Oct 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 15:27 EST 2022. Contains 358588 sequences. (Running on oeis4.)