login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182533 A symmetrical triangle. Read by rows: T(n,k) = 2*C(n-2,k-1) - C(n-2,k) - C(n-2,k-2), n >= 2, 0 <= k <= n, with T(0,0) = 0, T(1,0) = T(1,1) = 1. 8
0, 1, 1, -1, 2, -1, -1, 1, 1, -1, -1, 0, 2, 0, -1, -1, -1, 2, 2, -1, -1, -1, -2, 1, 4, 1, -2, -1, -1, -3, -1, 5, 5, -1, -3, -1, -1, -4, -4, 4, 10, 4, -4, -4, -1, -1, -5, -8, 0, 14, 14, 0, -8, -5, -1, -1, -6, -13, -8, 14, 28, 14, -8, -13, -6, -1, -1, -7, -19, -21, 6, 42, 42, 6, -21, -19, -7, -1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..5151 (rows n=1..100)

Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.

Graphical representation

FORMULA

T(n,k) = 2*C(n-2,k-1) - C(n-2,k) - C(n-2,k-2).

Row sums = 0, for n >= 2.

T(2*n,n) = 2*A000108(n-1).

T(2*n+3,n) = -A120009(n).

T(n+10,3) = -A137742(n+2).

Sum_{k=0..n} T(n,k)*2^k = -(3^(n-2)) where n >= 2.

Sum_{k=0..n} T(n,k)*3^k = -(4^(n-1)) where n >= 2.

Sum_{k=0..n} T(n,k)*p^k = -((p+1)^(n-2))*((p-1)^2) where n >= 2.

EXAMPLE

Triangle begins

0;

1, 1;

-1, 2, -1;

-1, 1, 1, -1;

-1, 0, 2, 0, -1;

-1, -1, 2, 2, -1, -1;

-1, -2, 1, 4, 1, -2, -1;

-1, -3, -1, 5, 5, -1, -3, -1;

-1, -4, -4, 4, 10, 4, -4, -4, -1;

MATHEMATICA

Flatten[Join[{{0}, {1, 1}}, Table[2*Binomial[n - 2, k - 1] - Binomial[n - 2, k] - Binomial[n - 2, k - 2], {n, 2, 15}, {k, 0, n}]]] (* T. D. Noe, May 08 2012 *)

PROG

(GAP) T:=Concatenation([0, 1, 1], Flat(List([2..11], n->List([0..n], k->2*Binomial(n-2, k-1)-Binomial(n-2, k)-Binomial(n-2, k-2))))); # Muniru A Asiru, Nov 29 2018

CROSSREFS

Cf. A000108, A120009, A137742.

Sequence in context: A294079 A114117 A144435 * A173120 A025920 A037821

Adjacent sequences: A182530 A182531 A182532 * A182534 A182535 A182536

KEYWORD

sign,tabl

AUTHOR

Alzhekeyev Ascar M, May 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 15:27 EST 2022. Contains 358588 sequences. (Running on oeis4.)