OFFSET
0,4
COMMENTS
In base 10, the corresponding sequence is A069638 and is periodic.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
B. Chen, R. Chen, J. Guo, S. Lee et al., On Base 3/2 and its Sequences, arXiv:1808.04304 [math.NT], 2018.
Index entries for linear recurrences with constant coefficients, signature (1,10,-10).
FORMULA
From Colin Barker, Jun 14 2018: (Start)
Generating function: x*(1 - 3*x)*(1 + 3*x) / ((1 - x)*(1 - 10*x^2)).
a(n) = (10^(n/2) + 80) / 90 for n>0.
a(n) = (10^((n-1)/2) + 8) / 9 for n>0.
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n>4.
(End)
EXAMPLE
Write decimal numbers as x_10, base-3/2 numbers as x_b (see A024629).
We have a(1) = 1, a(2) = 2 (in both bases).
Adding, we get 1+2 = 3_10 = 20_b, and sorting the digits gives a(3) = 2_b = 2_10.
Adding 2 and 2 we get 4_10 = 21_b, and sorting the digits gives a(4) = 12_b = (7/2)_10.
Adding 2 and 7/2 we get (11/2)_10 = 201_b, and sorting the digits gives a(5) = 12_b = (7/2)_10.
Adding (7/2)_10 and (7/2)_10 we get 7_10 = 211_b, and sorting the digits gives a(6) = 112_b = (23/4)_10.
Adding (7/2)_10 and (23/4)_10 we get (37/4)_10 = 2011_b, and sorting the digits gives a(7) = 112_b = (23/4)_10.
And so on.
PROG
(PARI) concat(0, Vec(x*(1 - 3*x)*(1 + 3*x) / ((1 - x)*(1 - 10*x^2)) + O(x^40))) \\ Colin Barker, Jun 19 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova and PRIMES STEP Senior group, Jun 09 2018
EXTENSIONS
Edited by N. J. A. Sloane, Jun 22 2018
STATUS
approved