

A162540


a(n) = (2*n+1)*(2*n+3)*(2*n+5)/3.


2



5, 35, 105, 231, 429, 715, 1105, 1615, 2261, 3059, 4025, 5175, 6525, 8091, 9889, 11935, 14245, 16835, 19721, 22919, 26445, 30315, 34545, 39151, 44149, 49555, 55385, 61655, 68381, 75579, 83265, 91455, 100165, 109411, 119209, 129575, 140525, 152075, 164241
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
M. R. Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.
Index entries for linear recurrences with constant coefficients, signature (4,6,4,1).


FORMULA

a(n) = A061550(n)/3 = A077415(2*n+3).
From R. J. Mathar, Jul 16 2009: (Start)
a(n) = 4*a(n1)  6*a(n2) + 4*a(n3)  a(n4) for n > 3.
G.f.: (5 + 15*x  5*x^2 + x^3)/(x1)^4. (End)
a(n) = 5*Pochhammer(7/2,n)/Pochhammer(1/2,n). Hence e.g.f. is 5* 1F1(7/2;1/2;x), with 1F1 being the confluent hypergemetric function (also known as Kummer's).  Stanislav Sykora, May 26 2016
E.g.f.: (8*x^3 + 60*x^2 + 90*x + 15)*exp(x)/3.  Robert Israel, May 27 2016
From Amiram Eldar, Jan 09 2021: (Start)
Sum_{n>=0} 1/a(n) = 1/4.
Sum_{n>=0} (1)^n/a(n) = 3*Pi/8  1 = A093828  1. (End)


MAPLE

A162540:=n>(2*n+1)*(2*n+3)*(2*n+5)/3: seq(A162540(n), n=0..80); # Wesley Ivan Hurt, May 28 2016


MATHEMATICA

Table[((2n+1)(2n+3)(2n+5))/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, 6, 4, 1}, {5, 35, 105, 231}, 40] (* Harvey P. Dale, Nov 06 2011 *)


PROG

(Magma) [(2*n+1)*(2*n+3)*(2*n+5)/3: n in [0..40]]; // Vincenzo Librandi, Nov 16 2011
(PARI) Vec((5+15*x5*x^2+x^3)/(x1)^4 + O(x^100)) \\ Altug Alkan, Oct 26 2015


CROSSREFS

Cf. A061550, A077415, A093828.
Sequence in context: A356132 A153785 A090294 * A161199 A111877 A179337
Adjacent sequences: A162537 A162538 A162539 * A162541 A162542 A162543


KEYWORD

nonn,easy


AUTHOR

Jacob Landon (jacoblandon(AT)aol.com), Jul 05 2009


EXTENSIONS

Offset corrected, definition clarified by R. J. Mathar, Jul 16 2009


STATUS

approved



