login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162540 a(n) = (2*n+1)*(2*n+3)*(2*n+5)/3. 2
5, 35, 105, 231, 429, 715, 1105, 1615, 2261, 3059, 4025, 5175, 6525, 8091, 9889, 11935, 14245, 16835, 19721, 22919, 26445, 30315, 34545, 39151, 44149, 49555, 55385, 61655, 68381, 75579, 83265, 91455, 100165, 109411, 119209, 129575, 140525, 152075, 164241 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.

M. R. Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = A061550(n)/3 = A077415(2*n+3).

From R. J. Mathar, Jul 16 2009: (Start)

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.

G.f.: (5 + 15*x - 5*x^2 + x^3)/(x-1)^4. (End)

a(n) = 5*Pochhammer(7/2,n)/Pochhammer(1/2,n). Hence e.g.f. is 5* 1F1(7/2;1/2;x), with 1F1 being the confluent hypergemetric function (also known as Kummer's). - Stanislav Sykora, May 26 2016

E.g.f.: (8*x^3 + 60*x^2 + 90*x + 15)*exp(x)/3. - Robert Israel, May 27 2016

From Amiram Eldar, Jan 09 2021: (Start)

Sum_{n>=0} 1/a(n) = 1/4.

Sum_{n>=0} (-1)^n/a(n) = 3*Pi/8 - 1 = A093828 - 1. (End)

MAPLE

A162540:=n->(2*n+1)*(2*n+3)*(2*n+5)/3: seq(A162540(n), n=0..80); # Wesley Ivan Hurt, May 28 2016

MATHEMATICA

Table[((2n+1)(2n+3)(2n+5))/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {5, 35, 105, 231}, 40] (* Harvey P. Dale, Nov 06 2011 *)

PROG

(Magma) [(2*n+1)*(2*n+3)*(2*n+5)/3: n in [0..40]]; // Vincenzo Librandi, Nov 16 2011

(PARI) Vec((5+15*x-5*x^2+x^3)/(x-1)^4 + O(x^100)) \\ Altug Alkan, Oct 26 2015

CROSSREFS

Cf. A061550, A077415, A093828.

Sequence in context: A356132 A153785 A090294 * A161199 A111877 A179337

Adjacent sequences: A162537 A162538 A162539 * A162541 A162542 A162543

KEYWORD

nonn,easy

AUTHOR

Jacob Landon (jacoblandon(AT)aol.com), Jul 05 2009

EXTENSIONS

Offset corrected, definition clarified by R. J. Mathar, Jul 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 15:27 EST 2022. Contains 358588 sequences. (Running on oeis4.)