OFFSET
1,3
COMMENTS
Area of an astroid with a = 1.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..20000
Eric Weisstein's World of Mathematics, Astroid.
Eric W. Weisstein, Euler's Series Transformation.
FORMULA
Equals Integral_{x>0} sin(x)^3/x^3. - Jean-François Alcover, Jun 04 2013
From Amiram Eldar, Aug 02 2020: (Start)
Equals arctan(1 + sqrt(2)).
Equals Integral_{x=0..1} x^(3/2)/sqrt(1-x) dx. (End)
Equals Sum_{k>=1} sin(k*Pi/4)/k. - Amiram Eldar, May 30 2021
3*Pi/8 = Sum_{n >= 1} n*(n+1)*2^(n+1)/binomial(2*n+6,n+3) (apply Euler's series transformation to the series representation Pi = 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)) ). - Peter Bala, Dec 08 2021
EXAMPLE
1.1780972450961724644234912687298135815739385247656646...
MAPLE
evalf[110](3*Pi*(1/8)); # G. C. Greubel, Aug 11 2019
MATHEMATICA
RealDigits[3*Pi/8, 10, 105][[1]] (* G. C. Greubel, Aug 11 2019 *)
PROG
(PARI) { default(realprecision, 20080); x=3*Pi/8; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093828.txt", n, " ", d)); } \\ Harry J. Smith, Jun 18 2009
(Magma) SetDefaultRealField(RealField(110)); R:= RealField(); 3*Pi(R)/8; // G. C. Greubel, Aug 11 2019
(Sage) numerical_approx(3*pi/8, digits=110) # G. C. Greubel, Aug 11 2019
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Apr 16 2004
STATUS
approved