This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073004 Decimal expansion of exp(gamma). 25
 1, 7, 8, 1, 0, 7, 2, 4, 1, 7, 9, 9, 0, 1, 9, 7, 9, 8, 5, 2, 3, 6, 5, 0, 4, 1, 0, 3, 1, 0, 7, 1, 7, 9, 5, 4, 9, 1, 6, 9, 6, 4, 5, 2, 1, 4, 3, 0, 3, 4, 3, 0, 2, 0, 5, 3, 5, 7, 6, 6, 5, 8, 7, 6, 5, 1, 2, 8, 4, 1, 0, 7, 6, 8, 1, 3, 5, 8, 8, 2, 9, 3, 7, 0, 7, 5, 7, 4, 2, 1, 6, 4, 8, 8, 4, 1, 8, 2, 8, 0, 3, 3, 4, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See references and additional links in A094644. LINKS Stanislav Sykora, Table of n, a(n) for n = 1..2000 Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., 50 (2013), 527-628. Simon Plouffe, The exp(gamma) Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant Eric Weisstein's World of Mathematics, Gronwall's Theorem Eric Weisstein's World of Mathematics, Mertens Theorem, Equations 2-3 FORMULA By Mertens theorem, equals lim(m->infinity)(1/log(prime(m))*prod(k=1..m, 1/(1-1/prime(k)))). - Stanislav Sykora, Nov 14 2014 EXAMPLE Exp(gamma) = 1.7810724179901979852365041031071795491696452143034302053... MATHEMATICA RealDigits[ E^(EulerGamma), 10, 110] [[1]] PROG (PARI) exp(Euler) (MAGMA) R:=RealField(100); Exp(EulerGamma(R)); // G. C. Greubel, Aug 27 2018 CROSSREFS Gamma is the Euler-Mascheroni constant A001620. Cf. A001113, A080130, A094644 (continued fraction for exp(gamma)), A246499. Sequence in context: A188485 A093828 A010514 * A256670 A021132 A019936 Adjacent sequences:  A073001 A073002 A073003 * A073005 A073006 A073007 KEYWORD cons,nonn,easy AUTHOR Robert G. Wilson v, Aug 03 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 21:04 EST 2018. Contains 317331 sequences. (Running on oeis4.)