The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077415 a(n) = n*(n+2)*(n-2)/3. 18
 0, 5, 16, 35, 64, 105, 160, 231, 320, 429, 560, 715, 896, 1105, 1344, 1615, 1920, 2261, 2640, 3059, 3520, 4025, 4576, 5175, 5824, 6525, 7280, 8091, 8960, 9889, 10880, 11935, 13056, 14245, 15504, 16835, 18240, 19721, 21280, 22919, 24640, 26445 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS a(n) is the number of independent components of a 3-tensor t(a,b,c) which satisfies t(a,b,c)=t(b,a,c) and sum(t(a,a,c),a=1..n)=0 for all c and t(a,b,c)+t(b,c,a)+t(c,a,b)=0, with a,b,c range 1..n. (3-tensor in n-dimensional space which is symmetric and traceless in one pair of its indices and satisfies the cyclic identity.) Number of standard tableaux of shape (n-1,2,1) (n>=3). - Emeric Deutsch, May 13 2004 Zero followed by partial sums of A028387, starting at n=1. - Klaus Brockhaus, Oct 21 2008 For n>=4, a(n-1) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0101 (the first n-4 zeros), or, the same, a(n-1) is up-down coefficient {n,5} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014 For n>=3, a(n) equals the second immanant of the (n-1) X (n-1) tridiagonal matrix with 2's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jan 08 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 2..10000 Mark Roger Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = n*(n+2)*(n-2)/3 = A077414(n) - binomial(n+2,3) = A077414(n) - A000292(n-1). G.f.: x^3*(5 - 4*x + x^2)/(1-x)^4. a(n) = A084990(n-1) - 1. - Reinhard Zumkeller, Aug 20 2007 a(n) = Sum_{i=0..floor((n-1)/2)} (-1)^i * 2^(n-2*i-1) * binomial(n-i-1, i) * (n-2*i-2). - John M. Campbell, Jan 08 2016 From Amiram Eldar, Jan 06 2021: (Start) Sum_{n>=3} 1/a(n) = 11/32. Sum_{n>=3} (-1)^(n+1)/a(n) = 5/32. (End) MAPLE seq((n^3-4*n)/3, n=2..35); # Zerinvary Lajos, Jan 20 2007 MATHEMATICA Print[Table[Sum[(-1)^i*2^(n-2*i-1)*Binomial[n-i-1, i]*(n-2*i-2), {i, 0, Floor[(n-1)/2]}], {n, 2, 100}]] ;  (* John M. Campbell, Jan 08 2016 *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 16, 35}, 50] (* Vincenzo Librandi, Jan 09 2016 *) Table[n*(n + 2)*(n - 2)/3, {n, 2, 50}] (* G. C. Greubel, Jan 18 2018 *) PROG (PARI) {a=0; print1(a, ", "); for(n=1, 42, print1(a=a+n+(n+1)^2, ", "))} \\ Klaus Brockhaus, Oct 21 2008 (PARI) concat(0, Vec(x^3*(5-4*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 08 2015 (MAGMA) [n*(n+2)*(n-2)/3: n in [2..50]]; /* or */ I:=[0, 5, 16, 35]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016 CROSSREFS Cf. A028387 (first differences), A033275 (partial sums), A084990. Sequence in context: A246697 A098404 A190970 * A234362 A108966 A321019 Adjacent sequences:  A077412 A077413 A077414 * A077416 A077417 A077418 KEYWORD nonn,easy,changed AUTHOR Wolfdieter Lang, Nov 29 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 22:20 EST 2021. Contains 340300 sequences. (Running on oeis4.)