

A162539


G.f. is the polynomial (1x^3) * (1x^6) * (1x^9) * (1x^12) * (1x^15) * (1x^18) / (1x)^6.


1



1, 6, 21, 55, 120, 231, 405, 660, 1014, 1484, 2085, 2829, 3724, 4773, 5973, 7315, 8784, 10359, 12013, 13713, 15420, 17091, 18681, 20145, 21440, 22527, 23373, 23952, 24246, 24246, 23952, 23373, 22527, 21440, 20145, 18681, 17091, 15420, 13713
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is a row of the triangle in A162499. Only finitely many terms are nonzero.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..57


MATHEMATICA

CoefficientList[ Series[Times @@ (1  x^(3 Range@6))/(1  x)^6, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)


PROG

(PARI) x='x+O('x^58); Vec((1x^3)*(1x^6)*(1x^9)*(1x^12)*(1x^15)*(1x^18)/(1x)^6) /* complete row */ \\ G. C. Greubel, Jul 06 2018
(MAGMA) m:=58; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1x^3)*(1x^6)*(1x^9)*(1x^12)*(1x^15)*(1x^18)/(1x)^6)); /* complete row */ // G. C. Greubel, Jul 06 2018


CROSSREFS

Sequence in context: A025203 A262719 A238702 * A259474 A002817 A132366
Adjacent sequences: A162536 A162537 A162538 * A162540 A162541 A162542


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 02 2009


STATUS

approved



