login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000466 a(n) = 4*n^2 - 1. 52
-1, 3, 15, 35, 63, 99, 143, 195, 255, 323, 399, 483, 575, 675, 783, 899, 1023, 1155, 1295, 1443, 1599, 1763, 1935, 2115, 2303, 2499, 2703, 2915, 3135, 3363, 3599, 3843, 4095, 4355, 4623, 4899, 5183, 5475, 5775, 6083, 6399, 6723, 7055, 7395 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum_{n>=1} (-1)^n*a(n)/n! = 1 - 1/e = A068996. - Gerald McGarvey, Nov 06 2007

Sequence arises from reading the line from -1, in the direction -1, 15, ... and the same line from 3, in the direction 3, 35, ..., in the square spiral whose nonnegative vertices are the squares A000290. - Omar E. Pol, May 24 2008

a(n) is the product of the consecutive odd integers 2n-1 and 2n+1 (cf. A005408). - Doug Bell, Mar 08 2009

For n>0: a(n) = A176271(2*n,n); cf. A016754, A053755. - Reinhard Zumkeller, Apr 13 2010

a(n+1) gives the curvature c(n) of the n-th circle touching the two equal semicircles of the symmetric arbelos (1/2, 1/2) and the (n-1)-st circle, with input c(0) = 3 = A059100(1) (referring to the second circle of the Pappus chain), for n >= 0. - Wolfdieter Lang and Kival Ngaokrajang, Jul 03 2015

After 3, a(n) is pseudoprime to base 2n. For example: (2*2)^(a(2)-1) == 1 (mod a(2)), in fact 4^14 = 15*17895697+1. - Bruno Berselli, Sep 24 2015

Numbers m such that m+1 and (m+1)/4 are squares. - Bruno Berselli, Mar 03 2016

After -1, the least common multiple of 2*m+1 and 2*m-1. - Colin Barker, Feb 11 2017

This sequence contains all products of the twin prime pairs (see A037074). - Charles Kusniec, Oct 03 2019

REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.

L. B. W. Jolley, Summation of Series, Dover, 2nd ed., 1961.

Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.

A. Languasco and A. Zaccagnini, Manuale di Crittografia, Ulrico Hoepli Editore (2015), p. 259.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..900

Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.

Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

Kival Ngaokrajang, Illustration of the Pappus chain (downwards direction).

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

O.g.f.: ( 1-6*x-3*x^2 ) / (x-1)^3 . - R. J. Mathar, Mar 24 2011

E.g.f.: (-1 + 4*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 26 2016

Sum_{n>=1} 1/a(n) = 1/2 [Jolley eq. 233]. - Benoit Cloitre, Apr 05 2002

Sum_{n>=1} 2/a(n) = 1 = 2/3 + 2/15 + 2/35 + 2/63 + 2/99 + 2/143, ..., with partial sums: 2/3, 4/5, 6/7, 8/9, 10/11, 12/13, 14/15, ... - Gary W. Adamson, Jun 16 2003

1/3 + Sum_{n>=2} 4/a(n) = 1 = 1/3 + 4/15 + 4/35 + 4/63, ..., with partial sums: 1/3, 3/5, 5/7, 7/9, 9/11, ..., (2n+1)/(2n+3). - Gary W. Adamson, Jun 18 2003

Sum_{n>=0} 2/a(2*n+1) = Pi/4 = 2/3 + 2/35 + 2/99, ... = (1 - 1/3) + (1/5 - 2/7) + (1/9 - 1/11) + ... = Sum_{n>=0} (-1)^n/(2*n+1). - Gary W. Adamson, Jun 22 2003

Product(n>=1, (a(n)+1)/a(n)) = Pi/2 (Wallis formula). - Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 03 2004

a(n)+2 = A053755(n). - Zak Seidov, Jan 16 2007

a(n)^2 + A008586(n)^2 = A053755(n)^2 (Pythagorean triple). - Zak Seidov, Jan 16 2007

a(n) = a(n-1) + 8*n - 4 for n > 0, a(0)=-1. - Vincenzo Librandi, Dec 17 2010

Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 - 1/2 = (A019669-1)/2. [Jolley eq (366)]. - R. J. Mathar, Mar 24 2011

For n>0, a(n) = 2/(Integral_{x=0..Pi/2} (sin(x))^3*(cos(x))^(2*n-2)). - Francesco Daddi, Aug 02 2011

Nonlinear recurrence for c(n) = a(n+1) (see the arbelos comment above) from Descartes' three circle theorem (see the links under A259555): c(n) = 4 + c(n-1) + 4*sqrt(c(n-1) + 1), with input c(0) = 3 = A059100(1), for n >= 0. The appropriate solution of this recurrence is c(n-1) + 1 = 4*n^2. - Wolfdieter Lang, Jul 03 2015

a(n) = 3*Pochhammer(5/2,n-1)/Pochhammer(1/2,n-1). Hence, the e.g.f. for a(n+1), i.e., dropping the first term, is 3* 1F1(5/2;1/2;x), with 1F1 being the confluent hypergeometric function (also known as Kummer's). - Stanislav Sykora, May 26 2016

Product_{n>=1} (1 - 1/a(n)) = sin(Pi/sqrt(2))/sqrt(2). - Amiram Eldar, Feb 04 2021

MAPLE

A000466:=n->4*n^2-1; seq(A000466(n), n=0..100); # Wesley Ivan Hurt, Nov 19 2013

MATHEMATICA

4 Range[0, 50]^2-1 (* Harvey P. Dale, Jan 23 2011 *)

PROG

(Magma) [4*n^2-1: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011

(PARI) a(n)=4*n^2-1 \\ Charles R Greathouse IV, Oct 27 2011

(Maxima) makelist(4*n^2-1, n, 0, 50); /* Martin Ettl, Nov 12 2012 */

(Sage) [4*n^2-1 for n in (0..50)] # Bruno Berselli, Sep 24 2015

CROSSREFS

Cf. A000290, A001539, A016286, A016742.

Factor of A160466. Superset of A037074.

Cf. A059100 (curvatures for a Pappus chain).

Sequence in context: A317182 A236693 A317183 * A241237 A338351 A145949

Adjacent sequences: A000463 A000464 A000465 * A000467 A000468 A000469

KEYWORD

sign,easy

AUTHOR

Chan Siu Kee (skchan5(AT)hkein.ie.cuhk.hk)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 14:51 EST 2022. Contains 358588 sequences. (Running on oeis4.)