The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000467 Number of permutations of [n] in which the longest increasing run has length 6. (Formerly M4868 N2083) 6
 0, 0, 0, 0, 0, 1, 12, 137, 1602, 19710, 257400, 3574957, 52785901, 827242933, 13730434111, 240806565782, 4452251786946, 86585391630673, 1767406549387381, 37790452850585180, 844817788372455779, 19711244788916894489, 479203883157602851294 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 REFERENCES F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 100 terms from Max Alekseyev) Max A. Alekseyev, On the number of permutations with bounded run lengths, arXiv preprint arXiv:1205.4581 [math.CO], 2012. MATHEMATICA b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]]; T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k + 1]; a[n_] := T[n, 6]; Array[a, 23] (* Jean-François Alcover, Feb 08 2016, after Alois P. Heinz in A008304 *) CROSSREFS Column 6 of A008304. Other columns: A000303, A000402, A000434, A000456. Cf. A001250, A001251, A001252, A001253, A010026, A211318. Sequence in context: A189501 A216081 A264503 * A059517 A243966 A097167 Adjacent sequences:  A000464 A000465 A000466 * A000468 A000469 A000470 KEYWORD nonn AUTHOR EXTENSIONS Edited and extended by Max Alekseyev, May 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 22:58 EDT 2020. Contains 334634 sequences. (Running on oeis4.)