login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000469 1 together with products of 2 or more distinct primes. 22
1, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Nonprime squarefree numbers.

Except for 1, composite n such that the squarefree part of n is greater than phi(n). - Benoit Cloitre, Apr 06 2002

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

FORMULA

n such that A007913(n)>A000010(n). - Benoit Cloitre, Apr 06 2002

N-floor(N/p1) - floor(N/(p2) - ... - floor(N/p(i) + floor(N/(c2) + floor(N/(c3)+ ... + floor(N/c(j)-1 where N is any number; p1,p2 are the primes with p(i) being the first prime > square root of N and c2, c3 are the numbers other than 1 in this sequence with c(j) <= N will yield the number of primes less than or equal to N other than p1, p2, ..., p(i). - Ben Paul Thurston, Aug 15 2007

A005171(a(n))*A008966(a(n)) = 1. - Reinhard Zumkeller, Nov 01 2009

Sum(n=1, Infinity, 1/a(n)^s) = Zeta(s)/Zeta(2s) - PrimeZeta(s). - Enrique Pérez Herrero, Mar 31 2012

n such that A001221(n) = A001222(n), n nonprime. - Carlos Eduardo Olivieri, Aug 06 2015

MAPLE

select(numtheory:-issqrfree and not isprime, [$1..1000]); # Robert Israel, Aug 06 2015

MATHEMATICA

lst={}; Do[If[SquareFreeQ[n], If[ !PrimeQ[n], AppendTo[lst, n]]], {n, 200}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009 *)

With[{upto=200}, Complement[Select[Range[upto], SquareFreeQ], Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Oct 01 2011 *)

Select[Range[200], !PrimeQ[#] && PrimeOmega[#] == PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 06 2015 *)

PROG

(PARI) for(n=0, 64, if(isprime(n), n+1, if(issquarefree(n), print(n))))

(PARI) for(n=1, 160, if(core(n)*(1-isprime(n))>eulerphi(n), print1(n, ", ")))

(Haskell)

a000469 n = a000469_list !! (n-1)

a000469_list = filter ((== 0) . a010051) a005117_list

-- Reinhard Zumkeller, Mar 21 2014

CROSSREFS

Cf. A005117, A007913, A000010, A010051, A239508, A239509, A120944 (composite squarefree numbers, same sequence apart from the first term).

Sequence in context: A182853 A212168 A080365 * A120944 A052053 A276818

Adjacent sequences:  A000466 A000467 A000468 * A000470 A000471 A000472

KEYWORD

nonn,easy,nice

AUTHOR

Dan Bentley (dtb(AT)research.att.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 07:54 EDT 2017. Contains 283985 sequences.