login
A160466
Row sums of the Eta triangle A160464
6
-1, -9, -87, -2925, -75870, -2811375, -141027075, -18407924325, -1516052821500, -153801543183750, -18845978136851250, -2744283682352086875, -468435979952504313750, -92643070481933918821875
OFFSET
2,2
COMMENTS
It is conjectured that the row sums of the Eta triangle depend on five different sequences.
Two Maple algorithms are given. The first one gives the row sums according to the Eta triangle A160464 and the second one gives the row sums according to our conjecture.
FORMULA
Rowsums(n) = (-1) * A119951(n-1) * FF(n) for n >= 2.
FF(n) = SF(n) * FF(n-1) for n >= 3 with FF(2) =1.
SF(2*n) = A045896(n-2) / A160467(n) for n >= 2.
SF(2*n+1) = A000466(n) / A043529(n-1) for n >= 1.
MAPLE
nmax:=15; c(2) := -1/3: for n from 3 to nmax do c(n):=(2*n-2)*c(n-1)/(2*n-1)-1/ ((n-1)*(2*n-1)) end do: for n from 2 to nmax do GCS(n-1) := ln(1/(2^(-(2*(n-1)-1-floor(ln(n-1)/ ln(2))))))/ln(2); p(n):=2^(-GCS(n-1))*(2*n-1)!; ETA(n, 1) := p(n)*c(n) end do: mmax:=nmax: for m from 2 to mmax do ETA(2, m) := 0 end do: for n from 3 to nmax do for m from 2 to mmax do q(n) := (1+(-1)^(n-3)*(floor(ln(n-1)/ln(2)) - floor(ln(n-2)/ln(2)))): ETA(n, m) := q(n)*(-ETA(n-1, m-1)+(n-1)^2*ETA(n-1, m)) end do end do: for n from 2 to nmax do s1(n):=0: for m from 1 to n-1 do s1(n) := s1(n) + ETA(n, m) end do end do: seq(s1(n), n=2..nmax);
# End first program.
nmax:=nmax; A160467 := proc(n): denom(4*(4^n-1)*bernoulli(2*n)/n) end: A043529 := proc(n): ceil(frac(log[2](n+1))+1) end proc: A000466 := proc(n): 4*n^2-1 end proc: A045896 := proc(n): denom((n)/((n+1)*(n+2))) end proc: A119951 := proc(n) : numer(sum(((2*k1)!/(k1!*(k1+1)!))/2^(2*(k1-1)), k1=1..n)) end proc: for n from 1 to nmax do SF(2*n+1):= A000466(n)/A043529(n-1); SF(2*n+2) := A045896(n-1)/A160467(n+1) end do: FF(2):=1: for n from 3 to nmax do FF(n) := SF(n) * FF(n-1) end do: for n from 2 to nmax do s2(n):= (-1)*A119951(n-1)*FF(n) end do: seq(s2(n), n=2..nmax);
# End second program.
CROSSREFS
A160464 is the Eta triangle.
Row sum factors A119951, A000466, A043529, A045896 and A160467.
Sequence in context: A035101 A351525 A245491 * A362509 A015583 A152266
KEYWORD
easy,sign
AUTHOR
Johannes W. Meijer, May 24 2009
STATUS
approved