login
A236693
Numbers k such that 2^sigma(k) == 1 (mod k).
3
1, 3, 15, 35, 51, 65, 105, 119, 195, 255, 315, 323, 357, 377, 455, 459, 585, 595, 663, 969, 1045, 1071, 1105, 1131, 1189, 1365, 1455, 1469, 1485, 1547, 1615, 1785, 1799, 1885, 1887, 1911, 2261, 2295, 2385, 2639, 2795, 2907, 3135, 3145, 3185, 3213, 3315, 3339
OFFSET
1,2
COMMENTS
This sequence is infinite since A051179(n) is a term. - Jinyuan Wang, Mar 13 2020
LINKS
Florian Luca, Positive integers n such that n| a^sigma(n) - 1, Novi Sad Journal of Mathematics, Vol 33, No. 2 (2003), pp. 49-66.
EXAMPLE
2^sigma(15) = 2^24 = 16777216 is congruent to 1 (mod 15), so 15 is a term of the sequence.
MATHEMATICA
l = {1};
For[i = 1, i <= 10^4, i++,
If[Mod[2^DivisorSigma[1, i], i] == 1, l = Append[l, i]]];
l
PROG
(PARI) s=[1]; for(n=1, 10000, if(2^sigma(n)%n==1, s=concat(s, n))); s \\ Colin Barker, Jan 30 2014
(PARI) isok(n) = Mod(2, n)^sigma(n)==1; \\ Altug Alkan, Sep 19 2017
CROSSREFS
Supersequence of A015715.
Sequence in context: A331249 A102790 A317182 * A317183 A000466 A241237
KEYWORD
nonn,easy
AUTHOR
Joseph L. Pe, Jan 30 2014
EXTENSIONS
a(1) = 1 added by Amiram Eldar, Sep 19 2017
STATUS
approved