login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075561 Domination number for kings' graph K(n). 6
1, 1, 1, 4, 4, 4, 9, 9, 9, 16, 16, 16, 25, 25, 25, 36, 36, 36, 49, 49, 49, 64, 64, 64, 81, 81, 81, 100, 100, 100, 121, 121, 121, 144, 144, 144, 169, 169, 169, 196, 196, 196, 225, 225, 225, 256, 256, 256, 289, 289, 289, 324, 324, 324, 361, 361, 361, 400, 400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

John J. Watkins, Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004, p. 102.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Centre for Discrete Mathematics and Theoretical Computer Science, CDMTCS-133, May 2000.

Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.

Eric Weisstein's World of Mathematics, Domination Number

Eric Weisstein's World of Mathematics, King Graph

Eric Weisstein's World of Mathematics, Kings Problem

Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).

FORMULA

a(n) = floor((n+2)/3)^2. - Vaclav Kotesovec, May 13 2012

G.f.: -x*(x+1)*(x^2-x+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Oct 06 2014

MATHEMATICA

Table[Floor[(n + 2)/3]^2, {n, 50}] (* Vaclav Kotesovec, May 13 2012 *)

LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 1, 1, 4, 4, 4, 9}, 20] (* Eric W. Weisstein, Jun 20 2017 *)

CoefficientList[Series[(-1 - x^3)/((-1 + x)^3 (1 + x + x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 20 2017 *)

PROG

(PARI) Vec(-x*(x+1)*(x^2-x+1)/((x-1)^3*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Oct 06 2014

CROSSREFS

Cf. A189889, A075458, A006075.

Sequence in context: A200600 A048761 A211547 * A256796 A117405 A013601

Adjacent sequences:  A075558 A075559 A075560 * A075562 A075563 A075564

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 16 2002

EXTENSIONS

More terms added from Vaclav Kotesovec, May 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:34 EDT 2019. Contains 322387 sequences. (Running on oeis4.)