login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075561
Domination number for kings' graph K(n).
13
1, 1, 1, 4, 4, 4, 9, 9, 9, 16, 16, 16, 25, 25, 25, 36, 36, 36, 49, 49, 49, 64, 64, 64, 81, 81, 81, 100, 100, 100, 121, 121, 121, 144, 144, 144, 169, 169, 169, 196, 196, 196, 225, 225, 225, 256, 256, 256, 289, 289, 289, 324, 324, 324, 361, 361, 361, 400, 400
OFFSET
1,4
COMMENTS
Also the lower independence number of the n X n knight graph. - Eric W. Weisstein, Aug 01 2023
REFERENCES
John J. Watkins, Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004, p. 102.
LINKS
Irene Choi, Shreyas Ekanathan, Aidan Gao, Tanya Khovanova, Sylvia Zia Lee, Rajarshi Mandal, Vaibhav Rastogi, Daniel Sheffield, Michael Yang, Angela Zhao, and Corey Zhao, The Struggles of Chessland, arXiv:2212.01468 [math.HO], 2022.
Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Centre for Discrete Mathematics and Theoretical Computer Science, CDMTCS-133, May 2000.
Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.
Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], 2024. See p. 15.
Eric Weisstein's World of Mathematics, Domination Number
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Kings Problem
Eric Weisstein's World of Mathematics, Lower Independence Number
FORMULA
a(n) = floor((n+2)/3)^2. - Vaclav Kotesovec, May 13 2012
G.f.: -x*(x+1)*(x^2-x+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Oct 06 2014
E.g.f.: exp(-x/2)*(exp(3*x/2)*(5 + 3*x*(3 + x)) + (6*x - 5)*cos(sqrt(3)*x/2) + sqrt(3)*(3 + 2*x)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Oct 17 2022
Sum_{n>=1} 1/a(n) = Pi^2/2 (A102753). - Amiram Eldar, Nov 03 2022
MATHEMATICA
Table[Floor[(n + 2)/3]^2, {n, 50}] (* Vaclav Kotesovec, May 13 2012 *)
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 1, 1, 4, 4, 4, 9}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
CoefficientList[Series[(-1 - x^3)/((-1 + x)^3 (1 + x + x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 20 2017 *)
PROG
(PARI) Vec(-x*(x+1)*(x^2-x+1)/((x-1)^3*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Oct 06 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 16 2002
EXTENSIONS
More terms added from Vaclav Kotesovec, May 13 2012
STATUS
approved