

A021002


Decimal expansion of Zeta(2)*Zeta(3)*Zeta(4)*...


11



2, 2, 9, 4, 8, 5, 6, 5, 9, 1, 6, 7, 3, 3, 1, 3, 7, 9, 4, 1, 8, 3, 5, 1, 5, 8, 3, 1, 3, 4, 4, 3, 1, 1, 2, 8, 8, 7, 1, 3, 1, 6, 3, 7, 9, 9, 4, 4, 1, 6, 6, 8, 6, 7, 3, 2, 7, 5, 8, 1, 4, 0, 3, 0, 0, 0, 1, 3, 9, 7, 0, 1, 2, 0, 1, 1, 3, 2, 3, 1, 5, 7, 5, 0, 1, 7, 9, 6, 8, 0, 4, 5, 2, 3, 2, 7, 2, 4, 9, 0, 8, 1, 3, 8, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A very good approximation is 2ePi = ~2.29497100332829723225793155942...  Marco Matosic, Nov 16 2005


REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.


LINKS

Table of n, a(n) for n=1..105.
S. R. Finch, Apery's Constant
Felix Fontein and Pawel Wocjan, Quantum Algorithm for Computing the Period Lattice of an Infrastructure, arXiv preprint arXiv:1111.1348, 2011
Felix Fontein and Pawel Wocjan, On the Probability of Generating a Lattice, arXiv preprint arXiv:1211.6246, 2012.  From N. J. A. Sloane, Jan 03 2013
Bernd C. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, arXiv:math/0604505.
Eric Weisstein's World of Mathematics, Abelian Group


FORMULA

Product of A080729 and A080730.  R. J. Mathar, Feb 16 2011


EXAMPLE

2.2948565916733137941835158313443112887131637994416686732758140300...


MAPLE

Digits := 256; product(Zeta(1.0*n), n=2..1000);


MATHEMATICA

p = Product[ N[ Zeta[n], 256], {n, 2, 1000}]; RealDigits[p, 10, 111][[1]] (* Robert G. Wilson v *)


CROSSREFS

Cf. A002117.
Sequence in context: A021440 A157216 A020776 * A103710 A178236 A093589
Adjacent sequences: A020999 A021000 A021001 * A021003 A021004 A021005


KEYWORD

cons,nonn


AUTHOR

Andre Neumann Kauffman (ank(AT)nlink.com.br)


EXTENSIONS

More terms from Simon Plouffe, Jan 07 2002
Further terms from Robert G. Wilson v, Nov 22 2005
Mathematica program fixed by Vaclav Kotesovec, Sep 20 2014


STATUS

approved



