login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221150 The generalized Fibonacci word f^[3]. 10
0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

(a(n)) is the [0->01, 1->0]-transform of the Fibonacci word A005614, or alternatively (see Ramirez et al.) the [0->0, 1->01]-transform of the Fibonacci word A003849. (a(n)) is the homogeneous Sturmian word with slope r = (5-sqrt(5))/10. Since the algebraic conjugate (5+sqrt(5)/10 of r is also in (0,1), (a(n)) is NOT a fixed point of a morphism (by Allauzen's criterion). - Michel Dekking, Oct 14 2017

From Michel Dekking, Oct 04 2018: (Start)

Let psi_3 be the elementary Sturmian morphism given by

      psi_3(0)=0, psi_3(1)=01,

and let x = A003849 be the Fibonacci word. Then, see previous comment, (a(n)) = psi_3(x). We show that (a(n)) is a fixed point of an automorphism sigma of the free group generated by 0 and 1.

To see this, let gamma be the Fibonacci morphism given by gamma(0)=01, gamma(1)=0. Then gamma(x) = x, and so

      psi_3(gamma(x)) = psi_3(x) = a,

implying that a = (a(n)) is fixed by

      sigma := psi_3 gamma psi_3^{-1}.

One easily computes psi_3^{-1}: 0->0, 1->0^{-1}1, which gives sigma:

      sigma(0) = 001,   sigma(1) = 1^{-1}0^{-1}.

(End)

REFERENCES

Dale Gerdemann, Problem 5.1, Problem Proposals, Ed. Clark Kimberling, Sixteenth International Conference on Fibonacci Numbers and Their Applications, Rochester Institute of Technology, Rochester, New York, July 24, 2014. Fibonacci Quarterly, to appear. [Mentions a sequence that appears to match this entry]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.

P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity Proc. Amer. Math. Soc. 123 (1995), 2005-2009.

Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, Juana Sendra, Steven E. Thornton, Bohemian Upper Hessenberg Toeplitz Matrices, arXiv:1809.10664 [cs.SC], 2018.

José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.

FORMULA

Set S_0=0, S_1=001; thereafter S_n = S_{n-1}S_{n-2}; sequence is S_{oo}.

From Peter Bala, Nov 19 2013: (Start)

a(n) = floor((n + 2)/(phi + 2)) - floor((n + 1)/(phi + 2)) where phi = 1/2*(1 + sqrt(5)) denotes the golden ratio.

If we read the present sequence as the digits of a decimal constant c = 0.00100 01001 00010 00100 .... then we have the series representation c = Sum_{n >= 1} 1/10^floor(n*(phi + 2)). An alternative representation is c = 9*Sum_{n >= 1} floor(n*(5 - sqrt(5))/10) /10^n.

The constant 9*c has the simple continued fraction representation [0; 111, 10, 10^3, 10^4, 10^7, ..., 10^Lucas(n), ...] (see Adams and Davison). Compare with A230900.

Using this result we can find the alternating series representation c = 9*Sum_{n >= 1} (-1)^(n+1)*(1 + 10^Lucas(3*n))/( (10^Lucas(3*n - 2) - 1)*(10^Lucas(3*n + 1) - 1) ). The series converges very rapidly: for example, the first 10 terms of the series give a value for c accurate to more than 7.8 million decimal places. Cf. A005614. (End)

EXAMPLE

(a(n)) can be obtained by iteration of sigma starting with 0.

      sigma(0)   =  001,

      sigma^2(0) =  0010011^{-1}0^{-1} = 0010,

      sigma^3(0) =  0010011^{-1}0^{-1}001 = 0010001.

      sigma^4(0) =  0010011^{-1}0^{-1}0010010011^{-1}0^{-1} =  00100010010.

MAPLE

fibi := proc(n, i)

    option remember;

    local j;

    if n = 0 then

        [0] ;

    elif n = 1 then

        [seq(0, j=1..i-1), 1] ;

    else

        [op(procname(n-1, i)), op(procname(n-2, i))] ;

    end if;

end proc:

fibonni := proc(n, i)

    local fn;

    for fn from 0 do

        Fn := fibi(fn, i) ;

        if nops( Fn) >= n+1 and nops(Fn) > i+3 then

            return op(n+1, Fn) ;

        end if;

    end do:

end proc:

A221150 := proc(n)

    fibonni(n, 3) ;

end proc: # R. J. Mathar, Jul 09 2013

MATHEMATICA

Table[Floor[(n + 2)/(GoldenRatio + 2)] - Floor[(n + 1)/(GoldenRatio + 2)], {n, 0, 120}] (* Michael De Vlieger, Apr 03 2016 *)

fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]];

fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[ Fn] >= n + 1 && Length[Fn] > i + 3, Return[ Fn[[n + 1]]]]]];

a[n_] := fibonni[n, 3]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 21 2017, after R. J. Mathar *)

PROG

(MAGMA) [Floor((n+2)/(1/2*(1+Sqrt(5))+2))-Floor((n+1)/(1/2*(1 +Sqrt(5))+2)): n in [0..100]]; // Vincenzo Librandi, Oct 15 2017

CROSSREFS

Cf. A003849, A005614. A000204, A221151, A221152, A230900.

Sequence in context: A285495 A073059 A288173 * A288997 A276794 A289025

Adjacent sequences:  A221147 A221148 A221149 * A221151 A221152 A221153

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 10:15 EDT 2019. Contains 328026 sequences. (Running on oeis4.)