The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046161 a(n) = denominator of binomial(2n,n)/4^n. 95
 1, 2, 8, 16, 128, 256, 1024, 2048, 32768, 65536, 262144, 524288, 4194304, 8388608, 33554432, 67108864, 2147483648, 4294967296, 17179869184, 34359738368, 274877906944, 549755813888, 2199023255552, 4398046511104, 70368744177664 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also denominator of e(0,n) (see Maple line). - N. J. A. Sloane, Feb 16 2002 Denominator of coefficient of x^n in (1+x)^(k/2) or (1-x)^(k/2) for any odd integer k. - Michael Somos, Sep 15 2004 Numerator of binomial(2n,n)/4^n = A001790(n). Denominators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005 Denominator of 2^m*Gamma(m+3/4)/(Gamma(3/4)*Gamma(m+1)). - Stephen Crowley, Mar 19 2007 Denominator in expansion of Jacobi_P(n,1/2,1/2,x). - Paul Barry, Feb 13 2008 This sequence equals the denominators of the coefficients of the series expansions of (1-x)^((-1-2*n)/2) for all integer values of n; see A161198 for detailed information. - Johannes W. Meijer, Jun 08 2009 Numerators of binomial transform of 1, -1/3, 1/5, -1/7, 1/9, ... (Madhava-Gregory-Leibniz series for Pi/4): 1, 2/3, 8/15, 16/35, 128/315, 256/693, .... First differences are -1/3, -2/15, -8/105, -16/315, -128/3465, -256/9009, ... which contain the same numerators, negated. The second differences are 1/5, 2/35, 8/315, 16/1155, 128/15015, ... again with the same numerators. Second column: 2/3, -2/15, 2/35, -2/63, 2/99; see A000466(n+1) = A005563(2n+1). Third column: 8*(1/15, -1/105, 1/315, -1/693, ...), see A061550. See A173294 and A173296. - Paul Curtz, Feb 16 2010 0, 1, 5/3, 11/5, 93/35, 193/63, 793/231, ... = (0 followed by A120778(n))/A001790(n) is the binomial transform of 0, 1, -1/3, 1/5, -1/7, 1/9, ... . See A173755 and formula below. - Paul Curtz, Mar 13 2013 Numerator of power series of arcsin(x)/sqrt(1-x^2), centered at x=0. - John Molokach, Aug 02 2013 Denominators of coefficients in the Taylor series expansion of Sum_{n>=0} exp((-1)^n * Euler(2*n)*x^n/(2*n)), see A280442 for the numerators. - Johannes W. Meijer, Jan 05 2017 Denominators of Pochhammer(n+1, -1/2)/sqrt(Pi). - Adam Hugill, Sep 11 2022 REFERENCES W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1. B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282). Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994), p. 72. LINKS T. D. Noe, Table of n, a(n) for n = 0..200 C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993. See V_n with N=1. Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4. V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317. Eric Weisstein's World of Mathematics, Heads-Minus-Tails Distribution Eric Weisstein's World of Mathematics, Random Walk 1-Dimensional Eric Weisstein's World of Mathematics, Legendre Polynomial Eric Weisstein's World of Mathematics, Binomial Series Eric Weisstein's World of Mathematics, Random Matrix FORMULA a(n) = 2^(2*n - 1 - A048881(n-1)), if n > 0. a(n) = 2^A005187(n). a(n) = 4^n/2^A000120(n). - Michael Somos, Sep 15 2004 a(n) = 2^A001511(n)*a(n-1) with a(0) = 1. - Johannes W. Meijer, Nov 04 2012 a(n) = denominator(binomial(-1/2,n)). - Peter Luschny, Nov 21 2012 a(n) = (0 followed by A120778(n)) + A001790(n). - Paul Curtz, Mar 13 2013 a(n) = 2^n*A060818(n). - Johannes W. Meijer, Jan 05 2017 EXAMPLE sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ... binomial(2n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ... The sequence e(0,n) begins 1, 3/2, 21/8, 77/16, 1155/128, 4389/256, 33649/1024, 129789/2048, 4023459/32768, ... MAPLE e := proc(l, m) local k; add(2^(k-2*m)*binomial(2*m-2*k, m-k)* binomial(m+k, m) *binomial(k, l), k=l..m); end: seq(denom(e(0, n)), n = 0..24); Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n)), n=-1..23); # Zerinvary Lajos, May 21 2008 A046161 := proc(n) option remember: if n = 0 then 1 else 2^A001511(n) * procname(n-1) fi: end: A001511 := proc(n): padic[ordp](2*n, 2) end: seq(A046161(n), n = 0..24); # Johannes W. Meijer, Nov 04 2012 A046161 := n -> 4^n/2^add(i, i=convert(n, base, 2)): seq(A046161(n), n=0..24); # Peter Luschny, Apr 08 2014 MATHEMATICA a[n_, m_] := Binomial[n - m/2 + 1, n - m + 1] - Binomial[n - m/2, n - m + 1]; s[n_] := Sum[ a[n, k], {k, 0, n}]; Table [Denominator[s[n]], {n, 0, 26}] (* Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002 *) Denominator[Table[Binomial[2n, n]/4^n, {n, 0, 30}]] (* Harvey P. Dale, Oct 29 2012 *) Table[Denominator@LegendreP[2n, 0], {n, 0, 24}] (* Andres Cicuttin, Jan 22 2018 *) PROG (PARI) a(n)=if(n<0, 0, denominator(binomial(2*n, n)/4^n)) /* Michael Somos, Sep 15 2004 */ (PARI) a(n)=my(s=n); while(n>>=1, s+=n); 2^s \\ Charles R Greathouse IV, Apr 07 2012 (PARI) a(n)=denominator(I^-n*pollegendre(n, I/2)) \\ Charles R Greathouse IV, Mar 18 2017 (Sage) def A046161(n): A005187 = lambda n: A005187(n//2) + n if n > 0 else 0 return 2^A005187(n) [A046161(n) for n in (0..24)] # Peter Luschny, Nov 16 2012 (Maxima) a(n) := denom(binomial(-1/2, n)); makelist(a(n), n, 0, 24); /* Peter Luschny, Nov 21 2012 */ (Magma) [Denominator(Binomial(2*n, n)/4^n): n in [0..30]]; // Vincenzo Librandi, Jul 18 2015 (Python 3.10+) def A046161(n): return 1<<(n<<1)-n.bit_count() # Chai Wah Wu, Nov 15 2022 CROSSREFS Cf. A001790, A001803, A002596, A005187, A072287, A067002, A142961. Cf. A161198 triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n. Sequence in context: A249308 A353820 A199043 * A092978 A280777 A013516 Adjacent sequences: A046158 A046159 A046160 * A046162 A046163 A046164 KEYWORD nonn,easy,nice,frac AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:42 EST 2022. Contains 358644 sequences. (Running on oeis4.)