OFFSET
0,2
COMMENTS
Previous name: One half of denominators of partial sums of a series for sqrt(2).
One half of denominators of partial sums which involve Catalan numbers A000108(k) divided by 4^k with alternating signs.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
FORMULA
a(n) = denominator(r(n)), with the rationals r(n) defined under A120088.
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = denominator(C(2*n+2,n+1)/2^(2*n+1)).
If b(n) = log(a(n))/log(2) then c(n) = b(n+1)-b(n) = A001511(n+1) i.e. the ruler function. (End)
MAPLE
a := n -> denom(binomial(2*n+2, n+1) / 2^(2*n+1)):
seq(a(n), n=0..22); # Johannes W. Meijer, Sep 23 2012
Conjecture: The following Maple program appears to generate this sequence! Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n))/2, n=0..22); # Zerinvary Lajos, May 21 2008
a := proc(n) option remember: if n = 0 then b(0):=0 else b(n) := b(n-1) + A001511(n+1) fi: a(n) := 2^b(n) end proc: A001511 := proc(n) option remember: if n = 1 then 1 else procname(n-1) + (-1)^n * procname(floor(n/2)) fi: end proc:
seq(a(n), n=0..22); # Johannes W. Meijer, Jul 06 2009, revised Sep 23 2012
MATHEMATICA
Table[Denominator[CatalanNumber[k]/(-4)^k], {k, 0, 22}] (* Jean-François Alcover, Jun 21 2013 *)
(* Alternative: *)
A120777[n_] := 2^(2*n - IntegerExponent[CatalanNumber[n], 2]);
Table[A120777[n], {n, 0, 26}] (* Peter Luschny, Apr 16 2024 *)
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
EXTENSIONS
New name by Peter Luschny, Apr 16 2024
STATUS
approved