|
|
A215713
|
|
Denominator of sum(i=1..n, 3*i/4^i).
|
|
2
|
|
|
4, 8, 64, 16, 1024, 2048, 16384, 16384, 262144, 524288, 4194304, 2097152, 67108864, 134217728, 1073741824, 1073741824, 17179869184, 34359738368, 274877906944, 17179869184, 4398046511104, 8796093022208, 70368744177664, 70368744177664, 1125899906842624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The odd-indexed terms are the even-indexed powers of 4 (A013709).
|
|
REFERENCES
|
Calvin C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 96.
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
a(4) = 16 because 3/4 + 6/16 + 9/64 + 12/256 = 3/4 + 3/8 + 9/64 + 3/64 = 48/64 + 24/64 + 9/64 + 3/64 = 84/64 = 21/16.
|
|
MATHEMATICA
|
Table[Denominator[Sum[3i/4^i, {i, n}]], {n, 40}]
|
|
PROG
|
(MAGMA) [Denominator(&+[3*i/4^i: i in [1..n]]): n in [1..25]]; // Bruno Berselli, Sep 03 2012
(PARI) vector(100, n, denominator(sum(i=1, n, 3*i/4^i))) \\ Colin Barker, Nov 09 2014
|
|
CROSSREFS
|
Cf. A215712 for the numerators. A036295/A036296 is very similar but with i/2^i instead of 3i/4^i. Cf. also A122553.
Sequence in context: A303284 A275574 A214590 * A120777 A091095 A075787
Adjacent sequences: A215710 A215711 A215712 * A215714 A215715 A215716
|
|
KEYWORD
|
nonn,easy,frac
|
|
AUTHOR
|
Alonso del Arte, Aug 21 2012
|
|
STATUS
|
approved
|
|
|
|