The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341475 2-near-perfect numbers. 1
 12, 18, 24, 30, 36, 40, 48, 54, 56, 66, 80, 84, 90, 96, 112, 126, 132, 156, 176, 198, 200, 208, 220, 270, 280, 304, 352, 364, 380, 448, 550, 570, 594, 690, 736, 882, 910, 918, 928, 945, 992, 1026, 1040, 1120, 1216, 1372, 1376, 1488, 1638, 1696, 1722, 1782 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A number n is k-near-perfect if n is the sum of all but k of the proper divisors of n.  Perfect numbers are 0-near-perfect and sequence A181595 lists the 1-near-perfect numbers. LINKS Michael S. Branicky, Table of n, a(n) for n = 1..2000 Paul Pollack and Vladimir Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), pp. 3037-3046. arXiv:1011.6160 EXAMPLE 48 is 2-near-perfect because its proper divisors are {1, 2, 3, 4, 6, 8, 12, 16, 24} and 48 = 1+2+3+4+6+8+24. PROG (Python) from sympy import divisors def ok(n):   proper_divs = divisors(n)[:-1]   s = sum(proper_divs)   if s - 3 < n: return False   if s - sum(proper_divs[-2:]) > n: return False   for i, c1 in enumerate(proper_divs[:-1]):     if s - c1 - proper_divs[i+1] < n: return False     if s - c1 - n in proper_divs[i+1:]: return True   return False def aupto(limit): return [m for m in range(1, limit+1) if ok(m)] print(aupto(1782)) # Michael S. Branicky, Feb 21 2021 CROSSREFS Cf. A000396, A181595. Sequence in context: A175837 A136446 A074726 * A091013 A159886 A258914 Adjacent sequences:  A341472 A341473 A341474 * A341476 A341477 A341478 KEYWORD nonn AUTHOR Jeffrey Shallit, Feb 13 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 14:57 EDT 2021. Contains 343089 sequences. (Running on oeis4.)