The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130976 G.f.: 8/(3 + 5*sqrt(1-16*x)). 6
 1, 5, 45, 485, 5725, 71445, 925965, 12335685, 167817405, 2321105525, 32536755565, 461181239205, 6598203881245, 95157851939285, 1381842797170125, 20187779510360325, 296499276685062525, 4375281190871356725, 64836419120040890925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of walks of length 2n on the 5-regular tree beginning and ending at some fixed vertex. Hankel transform is A135292. - Philippe Deléham, Feb 25 2009 Also the number of length 2n words over an alphabet of size 5 that can be built by repeatedly inserting doublets into the initially empty word. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Libor Caha, Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018. FORMULA a(n) = Sum_{k=0..n} A039599(n,k) * 4^(n-k). - Philippe Deléham, Aug 25 2007 a(0) = 1; a(n) = (5/n) * Sum_{j=0..n-1} C(2*n,j) * (n-j) * 4^j for n > 0. a(n) = upper left term in M^n, M = an infinite square production matrix as follows:   5, 5, 0, 0, 0, 0, ...   4, 4, 4, 0, 0, 0, ...   4, 4, 4, 4, 0, 0, ...   4, 4, 4, 4, 4, 0, ...   4, 4, 4, 4, 4, 4, ...   ... - Gary W. Adamson, Jul 13 2011 D-finite with recurrence: n*a(n) = (41*n-24)*a(n-1) - 200*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 20 2012 a(n) ~ 20*16^n/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012 From Karol A. Penson, Jul 02 2015: (Start) Special values of the hypergeometric function 2F1, in Maple notation: a(n) = 4*16^n*GAMMA(n+1/2)*hypergeom([1, n+1/2], [n+2], 16/25)/(5*sqrt(Pi)*(n+1)!), n=0,1,... Moment representation as the 2n-th moment of the positive function   W(x) = 5*sqrt(16-x^2)/(Pi*(25-x^2)) on (0,4):   a(n) = int(x^(2*n)*W(x),x=0..4), n=0,1,... . (End) MAPLE a:= n-> `if`(n=0, 1, 5/n*add(binomial(2*n, j) *(n-j)*4^j, j=0..n-1)): seq(a(n), n=0..20); MATHEMATICA CoefficientList[Series[8/(3+5*Sqrt[1-16*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *) CROSSREFS Column k=5 of A183135. Cf. A007318. Sequence in context: A340943 A199753 A220877 * A191095 A202825 A195188 Adjacent sequences:  A130973 A130974 A130975 * A130977 A130978 A130979 KEYWORD nonn AUTHOR Philippe Deléham, Aug 23 2007 EXTENSIONS More terms from Olivier Gérard, Sep 22 2007 Edited by Alois P. Heinz, Jan 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 01:49 EDT 2021. Contains 342941 sequences. (Running on oeis4.)