login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130976 G.f.: 8/(3 + 5*sqrt(1-16*x)). 6
1, 5, 45, 485, 5725, 71445, 925965, 12335685, 167817405, 2321105525, 32536755565, 461181239205, 6598203881245, 95157851939285, 1381842797170125, 20187779510360325, 296499276685062525, 4375281190871356725, 64836419120040890925 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of walks of length 2n on the 5-regular tree beginning and ending at some fixed vertex. Hankel transform is A135292. - Philippe Deléham, Feb 25 2009

Also the number of length 2n words over an alphabet of size 5 that can be built by repeatedly inserting doublets into the initially empty word.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Libor Caha, Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.

FORMULA

a(n) = Sum_{k=0..n} A039599(n,k) * 4^(n-k). - Philippe Deléham, Aug 25 2007

a(0) = 1; a(n) = (5/n) * Sum_{j=0..n-1} C(2*n,j) * (n-j) * 4^j for n > 0.

a(n) = upper left term in M^n, M = an infinite square production matrix as follows:

  5, 5, 0, 0, 0, 0, ...

  4, 4, 4, 0, 0, 0, ...

  4, 4, 4, 4, 0, 0, ...

  4, 4, 4, 4, 4, 0, ...

  4, 4, 4, 4, 4, 4, ...

  ...

- Gary W. Adamson, Jul 13 2011

Recurrence: n*a(n) = (41*n-24)*a(n-1) - 200*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 20 2012

a(n) ~ 20*16^n/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012

From Karol A. Penson, Jul 02 2015: (Start)

Special values of the hypergeometric function 2F1, in Maple notation:

a(n) = 4*16^n*GAMMA(n+1/2)*hypergeom([1, n+1/2], [n+2], 16/25)/(5*sqrt(Pi)*(n+1)!), n=0,1,...

Moment representation as the 2n-th moment of the positive function

  W(x) = 5*sqrt(16-x^2)/(Pi*(25-x^2)) on (0,4):

  a(n) = int(x^(2*n)*W(x),x=0..4), n=0,1,... . (End)

MAPLE

a:= n-> `if`(n=0, 1, 5/n*add(binomial(2*n, j) *(n-j)*4^j, j=0..n-1)):

seq(a(n), n=0..20);

MATHEMATICA

CoefficientList[Series[8/(3+5*Sqrt[1-16*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

CROSSREFS

Column k=5 of A183135.

Cf. A007318.

Sequence in context: A209442 A199753 A220877 * A191095 A202825 A195188

Adjacent sequences:  A130973 A130974 A130975 * A130977 A130978 A130979

KEYWORD

nonn

AUTHOR

Philippe Deléham, Aug 23 2007

EXTENSIONS

More terms from Olivier Gérard, Sep 22 2007

Edited by Alois P. Heinz, Jan 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 08:42 EDT 2018. Contains 316522 sequences. (Running on oeis4.)