OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.
LINKS
Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See p. 16.
László Tóth, Alternating sums concerning multiplicative arithmetic functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1; arXiv preprint, arXiv:1608.00795 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Abelian Group.
FORMULA
Equals Product_{p prime} (1-Sum_{k >= 2} (1/P(k-1)-1/P(k))/p^k), where P(k) is the unrestricted partition function. - Jean-François Alcover, Apr 29 2016, [typo corrected by Vaclav Kotesovec, Mar 05 2024]
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} 1/A000688(k). - Amiram Eldar, Oct 16 2020
EXAMPLE
0.7520107423...
MATHEMATICA
digits = 10; m0 (* initial number of primes *) = 10^6; dm = 2*10^5; PP = PartitionsP; DP[n_] := DP[n] = (1/PP[n - 1] - 1 /PP[n]) // N[#, digits + 5]&; pmax = Prime[1000];
nmax[p_ /; p <= pmax] := nmax[p] = Module[{n}, For[n = 2, n < 1000, n++, If[Abs[1/PP[n - 1] - 1 /PP[n]]/p^n < 10^-100, Return[n]]]]; nmax[p_ /; p > pmax] := nmax[pmax];
s[p_] := Sum[DP[n]/p^n, {n, 2, nmax[p]}] ;
f[m_] := f[m] = Product[1 - s[p], {p, Prime[Range[m]]}]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2][[1]] != RealDigits[f[m - dm], 10, digits + 2][[1]], m = m + dm; Print[m, " ", RealDigits[f[m]]]];
A0 = f[m]; RealDigits[A0, 10, digits][[1]] (* Jean-François Alcover, Apr 29 2016 *)
PROG
(PARI) default(realprecision, 120); default(parisize, 10000000);
prodeulerrat((1-1/p)*(1 + sum(i = 1, 512, 1/(numbpart(i)*p^i)))) \\ Amiram Eldar, Mar 08 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jun 11 2003
EXTENSIONS
Data corrected by Jean-François Alcover, Apr 29 2016
a(10) from Vaclav Kotesovec, Mar 07 2024
More terms from Amiram Eldar, Mar 08 2024
STATUS
approved