The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272169 Decimal expansion of A_0 (so named by S. Finch), a constant related to the asymptotic expression of the sum of the reciprocals of the number of abelian groups of a given order. 1
 7, 5, 2, 0, 1, 0, 7, 4, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See p. 16. Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274. LINKS FORMULA A_0 = Product_{p prime} (1-Sum_{k >= 2} (1/P(k-1)-1/P(k)/p^k), where P(k) is the unrestricted partition function. Equals lim_{n->oo} (1/n) * Sum_{k=1..n} 1/A000688(k). - Amiram Eldar, Oct 16 2020 EXAMPLE 0.7520107423... MATHEMATICA digits = 10; m0 (* initial number of primes *) = 10^6; dm = 2*10^5; PP = PartitionsP; DP[n_] := DP[n] = (1/PP[n - 1] - 1 /PP[n]) // N[#, digits + 5]&; pmax = Prime[1000]; nmax[p_ /; p <= pmax] := nmax[p] = Module[{n}, For[n = 2, n < 1000, n++, If[Abs[1/PP[n - 1] - 1 /PP[n]]/p^n < 10^-100, Return[n]]]]; nmax[p_ /; p > pmax] := nmax[pmax]; s[p_] := Sum[DP[n]/p^n, {n, 2, nmax[p]}] ; f[m_] := f[m] = Product[1 - s[p], {p, Prime[Range[m]]}]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2][[1]] != RealDigits[f[m - dm], 10, digits + 2][[1]], m = m + dm; Print[m, " ", RealDigits[f[m]]]]; A0 = f[m]; RealDigits[A0, 10, digits][[1]] CROSSREFS Cf. A000688, A021002, A084892, A084893, A272339. Sequence in context: A316334 A196486 A216853 * A073742 A084911 A071876 Adjacent sequences:  A272166 A272167 A272168 * A272170 A272171 A272172 KEYWORD nonn,cons,more,changed AUTHOR Jean-François Alcover, Apr 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 02:35 EDT 2020. Contains 337948 sequences. (Running on oeis4.)