|
|
A196486
|
|
Irregular triangle 3^n-2^m.
|
|
2
|
|
|
1, 7, 5, 1, 25, 23, 19, 11, 79, 77, 73, 65, 49, 17, 241, 239, 235, 227, 211, 179, 115, 727, 725, 721, 713, 697, 665, 601, 473, 217, 2185, 2183, 2179, 2171, 2155, 2123, 2059, 1931, 1675, 1163, 139, 6559, 6557, 6553, 6545, 6529, 6497, 6433, 6305, 6049, 5537
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Each n-th row consists of A056576(n) terms, the first term is 3^n-2, n-th term is 3^n-2^n=A001047(n), and the last term is A056577(n).
T(n,k) = A227048(n,A056576(n)-k) for k = 1..A056576(n). - Reinhard Zumkeller, Jun 30 2013
|
|
LINKS
|
T. D. Noe, Rows n = 1..100 of triangle, flattened
|
|
EXAMPLE
|
Rows are:
n=1: 1
n=2: 7,5,1
n=3: 25,23,19,11
n=4: 79,77,73,65,49,17
n=5: 241,239,235,227,211,179,115.
|
|
MATHEMATICA
|
Flatten[Table[3^k - 2^m, {k, 10}, {m, Floor[Log[2, 3^k]]}]]
|
|
PROG
|
(Haskell)
a196486 n k = a196486_tabf !! (n-1) !! (k-1)
a196486_row n = a196486_tabf !! (n-1)
a196486_tabf = map (tail . reverse) $ tail a227048_tabf
-- Reinhard Zumkeller, Jun 30 2013
|
|
CROSSREFS
|
Cf. A001047, A056576, A056577.
Sequence in context: A330156 A323811 A316334 * A216853 A084911 A272169
Adjacent sequences: A196483 A196484 A196485 * A196487 A196488 A196489
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Zak Seidov, Oct 03 2011
|
|
STATUS
|
approved
|
|
|
|