|
|
A122983
|
|
a(n) = (2 + (-1)^n + 3^n)/4.
|
|
18
|
|
|
1, 1, 3, 7, 21, 61, 183, 547, 1641, 4921, 14763, 44287, 132861, 398581, 1195743, 3587227, 10761681, 32285041, 96855123, 290565367, 871696101, 2615088301, 7845264903, 23535794707, 70607384121, 211822152361, 635466457083
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Old definition was: "Binomial transform of aeration of A081294".
Binomial transform is A063376.
A122983 = (1,1,3,7,1,1,3,7,...) mod 10. - M. F. Hasler, Feb 25 2008
Equals row sums of triangle A158301. - Gary W. Adamson, Mar 15 2009
a(n) = the number of ternary sequences of length n where the numbers of (0's, 1's) are both even. A015518 covers the (odd, even) and (even, odd) cases, and A081251 covers (odd, odd). - Toby Gottfried, Apr 18 2010
This sequence also describes the number of moves of the k-th disk solving (non-optimally) the [RED ; NEUTRAL ; BLUE] pre-colored Magnetic Tower of Hanoi (MToH) puzzle. The sequence A183119 is the partial sums of the sequence in question (obviously describing the total number of moves associated with the specific solution algorithm). For other MToH-related sequences, Cf. A183111 - A183125.
Let B=[1,sqrt(2),0; sqrt(2),1,sqrt(2); 0,sqrt(2),1] be a 3 X 3 matrix. Then a(n)=[B^n]_(1,1), n=0,1,2,.... - L. Edson Jeffery, Dec 21 2011
Also the domination number of the n-Hanoi graph. - Eric W. Weisstein, Jun 16 2017
Also the matching number of the n-Sierpinski sieve graph. - Eric W. Weisstein, Jun 17 2017
Let M = [1,1,1,0; 1,1,0,1; 1,0,1,1; 0,1,1,1], a 4 X 4 matrix. Then a(n) is the upper left entry in M^n. - Philippe Deléham, Aug 23 2020
|
|
LINKS
|
M. F. Hasler, Table of n, a(n) for n = 0..199.
Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, arXiv preprint, arXiv:1505.04479 [math.GR], 2015.
A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 99. Book's website
Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
Eric Weisstein's World of Mathematics, Domination Number
Eric Weisstein's World of Mathematics, Matching Number
Eric Weisstein's World of Mathematics, Hanoi Graph
Eric Weisstein's World of Mathematics, Sierpinski Sieve Graph
Index entries for linear recurrences with constant coefficients, signature (3,1,-3).
|
|
FORMULA
|
From Paul Barry, Jun 14 2007: (Start)
G.f.: (1-2*x-x^2)/((1-x)*(1+x)*(1-3*x));
a(n) = 3^n/4+(-1)^n/4+1/2;
E.g.f.: cosh(x)^2*exp(x). (End)
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3); a(0)=1, a(1)=1, a(2)=3. - Harvey P. Dale, Sep 03 2013
E.g.f.: Q(0)/2, where Q(k) = 1 + 3^k/( 2 - 2*(-1)^k/( 3^k + (-1)^k - 2*x*3^k/( 2*x + (k+1)*(-1)^k/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2013
a(2*n) = 3*a(2*n-1); a(2*n+1) = 3*a(2*n) - 2. - Philippe Deléham, Aug 23 2020
|
|
MAPLE
|
A122983 := n -> ceil(3^n/4); 'A122983(n)' $ n=0..22; # M. F. Hasler, Feb 25 2008
a[ -1]:=1:a[0]:=1:a[1]:=3:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-2 od: seq(a[n], n=-1..25); # Zerinvary Lajos, Apr 28 2008
|
|
MATHEMATICA
|
CoefficientList[Series[(1 - 2 x - x^2)/((1 - x) (1 + x) (1 - 3 x)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 03 2013 *)
LinearRecurrence[{3, 1, -3}, {1, 1, 3}, 40] (* Harvey P. Dale, Sep 03 2013 *)
Table[(2 + (-1)^n + 3^n)/4, {n, 0, 20}] (* Eric W. Weisstein, Jun 16 2017 *)
Table[Floor[3^n/4] + 1, {n, 0, 20}] (* Eric W. Weisstein, Jan 17 2018 *)
Floor[3^Range[0, 20]/4] + 1 (* Eric W. Weisstein, Jan 17 2018 *)
|
|
PROG
|
(PARI) A122983(n)=3^n\4+1 \\ M. F. Hasler, Feb 25 2008
|
|
CROSSREFS
|
Cf. a(j+1) = A137822(2^j) and these are the record values of A137822.
Cf. A054879 (bisection), A066443 (bisection). Row sums of A158303.
Sequence in context: A056779 A183113 A102877 * A005355 A182399 A025235
Adjacent sequences: A122980 A122981 A122982 * A122984 A122985 A122986
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Sep 22 2006
|
|
EXTENSIONS
|
Extended and corrected (existing Maple code) by M. F. Hasler, Feb 25 2008
Description changed to formula by Eric W. Weisstein, Jun 16 2017
|
|
STATUS
|
approved
|
|
|
|