The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183125 Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle. 20
 0, 1, 4, 11, 30, 83, 236, 687, 2026, 6027, 18008, 53927, 161654, 484803, 1454212, 4362399, 13086914, 39260411, 117780848, 353342103, 1060025806, 3180076851, 9540229916, 28620689039, 85862066330, 257586198123, 772758593416, 2318275779207, 6954827336486, 20864482008227, 62593446023348, 187780338068607, 563341014204274, 1690023042611163 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [NEUTRAL ; NEUTRAL ; NEUTRAL], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the presented sequence is NOT optimal. The particular "61" algorithm solving the puzzle at hand is not explicitly presented in any of the referenced papers. For the optimal solution of the Magnetic Tower of Hanoi puzzle with the given pre-coloring configuration (the "natural" or "free" Magnetic Tower) see A183117 and A183118. Optimal solutions are discussed and their optimality is proved in link 2 listed below. Large N limit of the sequence is 0.5*(197/324)*3^N ~ 0.5*0.61*3^N. Series designation: S61(n). REFERENCES Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173. LINKS Muniru A Asiru, Table of n, a(n) for n = 0..2020 Uri Levy, The Magnetic Tower of Hanoi, arxiv:1003.0225 [math.CO], 2010. Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010. Uri Levy, to play The Magnetic Tower of Hanoi, web applet [Broken link] Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3). Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3). FORMULA G.f.: (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1). a(n) = +5*a(n-1)-6*a(n-2)-2*a(n-3)+7*a(n-4)-3*a(n-5). (a(n) = S61(n) as in referenced paper): a(n) = 3*a(n-1) - 2*n^2 + 17*n - 43 ; n even ; n >= 6. a(n) = 3*a(n-1) - 2*n^2 + 17*n - 42 ; n odd ; n >= 5. a(n) = S64(n-1) + S64(n-2) + S75(n-3) + 4*3^(n-3) + 2 ; n >= 3. S64(n) and S75(n) refer to the integer sequences described by A183121 and A183119 respectively. a(n) = 0.5*(197/324)*3^n + n^2 - 5.5*n + 91/8; n even; n >= 4. a(n) = 0.5*(197/324)*3^n + n^2 - 5.5*n + 93/8; n odd; n >= 5. MAPLE seq(coeff(series((-4*x^8-2*x^6+x^4-3*x^3-x^2+x)/(3*x^5-7*x^4+2*x^3+6*x^2-5*x+1), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018 MATHEMATICA Join[{0, 1, 4, 11}, LinearRecurrence[{5, -6, -2, 7, -3}, {30, 83, 236, 687, 2026}, 30]] (* Jean-François Alcover, Dec 04 2018 *) CoefficientList[Series[(- 4 x^8 - 2 x^6 + x^4 - 3 x^3 - x^2 + x) / (3 x^5 - 7 x^4 + 2 x^3 + 6 x^2 - 5 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *) PROG (MAGMA) I:=[0, 1, 4, 11, 30, 83, 236, 687, 2026]; [n le 9 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018 (PARI) my(x='x+O('x^30)); concat(, Vec((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))) \\ G. C. Greubel, Dec 04 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m);  cat Coefficients(R!( (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))); // G. C. Greubel, Dec 04 2018 (Sage) s=((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018 (GAP) a:=[30, 83, 236, 687, 2026];; for n in [6..30] do a[n]:=5*a[n-1]-6*a[n-2] -2*a[n-3]+7*a[n-4]-3*a[n-5]; od; Concatenation([0, 1, 4, 11], a); # G. C. Greubel, Dec 04 2018 CROSSREFS A183123 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle. A003462 "Partial sums of A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle. Cf. A183111 - A183125. Sequence in context: A078141 A090327 A183118 * A183123 A183116 A183121 Adjacent sequences:  A183122 A183123 A183124 * A183126 A183127 A183128 KEYWORD nonn,easy AUTHOR Uri Levy, Jan 08 2011 EXTENSIONS More terms from Jean-François Alcover, Dec 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 01:28 EDT 2020. Contains 336484 sequences. (Running on oeis4.)