login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054879
Closed walks of length 2n along the edges of a cube based at a vertex.
17
1, 3, 21, 183, 1641, 14763, 132861, 1195743, 10761681, 96855123, 871696101, 7845264903, 70607384121, 635466457083, 5719198113741, 51472783023663, 463255047212961, 4169295424916643, 37523658824249781, 337712929418248023, 3039416364764232201, 27354747282878089803, 246192725545902808221
OFFSET
0,2
COMMENTS
a(n) is the number of words of length 2n on alphabet {0,1,2} with an even number (possibly zero) of each letter. - Geoffrey Critzer, Dec 20 2012
Equivalently, the cogrowth sequence of the 8-element group C2^3. - Sean A. Irvine, Nov 04 2024
LINKS
G. Benkart and D. Moon, A Schur-Weyl Duality Approach to Walking on Cubes, arXiv preprint arXiv:1409.8154 [math.RT], 2014 and Ann. Combin. 20 (3) (2016) 397-417
R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
G. R. Franssens, On a number pyramid related to the binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, How big is BCI fragment of BCK logic, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. [From N. J. A. Sloane, Feb 21 2012]
Ji-Hwan Jung, Oriented Riordan graphs and their fractal property, arXiv:2009.01677 [math.CO], 2020.
R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 5.
L. Reyzin, Number of closed walks on an n-cube, Mathoverflow.
FORMULA
a(n) = (3^(2*n)+3)/4.
G.f.: 1/4*1/(1-9*x)+3/4*1/(1-x).
a(n) = Sum_{k=0..n} 3^k*4^(n-k)*A121314(n,k). - Philippe Deléham, Aug 26 2006
E.g.f.: cosh^3(x). O.g.f.: 1/(1-3*1*x/(1-2*2*x/(1-1*3*x))) (continued fraction). - Peter Bala, Nov 13 2006
(-1)^n*a(n) = Sum_{k=0..n} A086872(n,k)*(-4)^(n-k). - Philippe Deléham, Aug 17 2007
a(n) = (1/2^3)*Sum_{j = 0..3} binomial(3,j)*(3 - 2*j)^(2*n). See Reyzin link. - Peter Bala, Jun 03 2019
a(n) = 9*a(n-1) - 6. - Klaus Purath, Mar 13 2021
MATHEMATICA
nn = 40; Select[Range[0, nn]! CoefficientList[Series[Cosh[x]^3, {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Dec 20 2012 *)
Table[(3^(2n)+3)/4, {n, 0, 30}] (* or *) LinearRecurrence[{10, -9}, {1, 3}, 30] (* Harvey P. Dale, Mar 17 2023 *)
PROG
(Magma) [(3^(2*n)+3)/4: n in [0..25]]; // Vincenzo Librandi, Jun 30 2011
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
STATUS
approved