login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054878
Number of closed walks of length n along the edges of a tetrahedron based at a vertex.
23
1, 0, 3, 6, 21, 60, 183, 546, 1641, 4920, 14763, 44286, 132861, 398580, 1195743, 3587226, 10761681, 32285040, 96855123, 290565366, 871696101, 2615088300, 7845264903, 23535794706, 70607384121, 211822152360, 635466457083
OFFSET
0,3
COMMENTS
Number of closed walks of length n at a vertex of C_4, the cyclic graph on 4 nodes. 3*A015518(n) + a(n) = 3^n. - Paul Barry, Feb 03 2004
Form the digraph with matrix A = [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,0,1,1]; a(n) corresponds to the (1,1) term of A^n. - Paul Barry, Oct 02 2004
Absolute values of A084567 (compare generating functions).
For n > 1, 4*a(n)=A218034(n)= the trace of the n-th power of the adjacency matrix for a complete 4-graph, a 4 X 4 matrix with a null diagonal and all ones for off-diagonal elements. The diagonal elements for the n-th power are a(n) and the off-diagonal are a(n)+1 for an odd power and a(n)-1 for an even (cf. A001045). - Tom Copeland, Nov 06 2012
LINKS
Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
R. J. Mathar, Counting Walks on Finite Graphs, (Nov 2020), Section 2.
FORMULA
a(n) = (3^n + (-1)^n*3)/4.
G.f.: 1/4*(3/(1+x) + 1/(1-3*x)).
E.g.f.: (exp(3*x) + 3*exp(-x))/4. - Paul Barry, Apr 20 2003
a(n) = 3^n - a(n-1) with a(0)=0. - Labos Elemer, Apr 26 2003
G.f.: (1 - 3*x^2 - 2*x^3)/(1 - 6*x^2 - 8*x^3 - 3*x^4) = (1 - 3*x^2 - 2*x^3)/charpoly(adj(C_4)). - Paul Barry, Feb 03 2004
From Paul Barry, Oct 02 2004: (Start)
G.f.: (1-2*x)/(1 - 2*x - 3*x^2).
a(n) = 2*a(n-1) + 3*a(n-2). (End)
G.f.: 1 - x + x/Q(0), where Q(k) = 1 + 3*x^2 - (3*k+4)*x + x*(3*k+1 - 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
a(n+m) = a(n)*a(m) + a(n+1)*a(m+1)/3. - Yuchun Ji, Sep 12 2017
a(n) = 3*a(n-1) + 3*(-1)^n. - Yuchun Ji, Sep 13 2017
From Peter Bala, May 28 2024: (Start)
a(n) = (-1)^n + Sum_{k = 1..n} (-1)^(n-k)*binomial(n, k)*4^(k-1).
G.f.: A(x) = 1/(1 - x^2) o 1/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A015575.
The black diamond product A(x) o A(x) is the g.f. for the number of closed walks of length n at a vertex along the edges of the 15-simplex. (End)
MAPLE
A054878:=n->(3^n + (-1)^n*3)/4: seq(A054878(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
MATHEMATICA
Table[(3^n + (-1)^n*3)/4, {n, 0, 26}] (* or *)
CoefficientList[Series[1/4*(3/(1 + x) + 1/(1 - 3 x)), {x, 0, 26}], x] (* Michael De Vlieger, Sep 15 2017 *)
PROG
(Magma) [(3^n+(-1)^n*3)/4: n in [0..35]]; // Vincenzo Librandi, Jun 30 2011
(PARI) a(n) = (3^n + 3*(-1)^n)/4; \\ Altug Alkan, Sep 17 2017
CROSSREFS
Row n=4 of A109502. A084567 (signed version).
{a(n)/3} for n>0 is A015518, non-closed walks.
Cf. A001045, A078008, A097073, A115341, A015518 (sequences where a(n)=3^n-a(n-1)). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Sequence in context: A148622 A148623 A259273 * A084567 A294527 A261582
KEYWORD
nonn,walk,easy
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
STATUS
approved