login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015575 Expansion of x/(1 - 8*x - 5*x^2). 3
0, 1, 8, 69, 592, 5081, 43608, 374269, 3212192, 27568881, 236612008, 2030740469, 17428983792, 149585572681, 1283829500408, 11018563866669, 94567658435392, 811634086816481, 6965910986708808, 59785458327752869, 513113221555566992, 4403833064083300281, 37796230620444237208 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Pisano period lengths: 1, 2, 3, 2, 4, 6, 21, 4, 9, 4, 120, 6, 56, 42, 12, 8, 16, 18, 360, 4, ... - R. J. Mathar, Aug 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,5).

FORMULA

a(n) = 8*a(n-1) + 5*a(n-2).

a(n) = (1/42)*(4+sqrt(21))^n*sqrt(21) - (1/42)*sqrt(21)*(4-sqrt(21))^n, with n >= 0. - Paolo P. Lava, Jun 25 2008

MATHEMATICA

Join[{a=0, b=1}, Table[c=8*b+5*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)

LinearRecurrence[{8, 5}, {0, 1}, 30] (* Vincenzo Librandi, Nov 14 2012 *)

PROG

(Sage) [lucas_number1(n, 8, -5) for n in xrange(0, 20)] # Zerinvary Lajos, Apr 25 2009

(MAGMA) [n le 2 select n-1 else 8*Self(n-1) + 5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2012

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-8*x-5*x^2))) \\ G. C. Greubel, Jan 06 2018

CROSSREFS

Sequence in context: A111156 A297633 A152279 * A214344 A228421 A152109

Adjacent sequences:  A015572 A015573 A015574 * A015576 A015577 A015578

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 11:05 EDT 2018. Contains 315389 sequences. (Running on oeis4.)