This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001701 Generalized Stirling numbers. (Formerly M4169 N1735) 19
 1, 6, 26, 71, 155, 295, 511, 826, 1266, 1860, 2640, 3641, 4901, 6461, 8365, 10660, 13396, 16626, 20406, 24795, 29855, 35651, 42251, 49726, 58150, 67600, 78156, 89901, 102921, 117305, 133145, 150536, 169576, 190366, 213010, 237615, 264291, 293151, 324311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy] Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = n*(n-1)*(3n^2 + 17n + 26)/24, n > 1. G.f.: z*(-1-z-6*z^2+9*z^3-5*z^4+z^5)/(z-1)^5. - Simon Plouffe in his 1992 dissertation If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i) * Product_{j=0..k-1} (-a - j), then a(n) = f(n,n-2,2), for n >= 2. - Milan Janjic, Dec 20 2008 MAPLE A001701 := proc(n)     if n = 1 then         1;     else         n*(n-1)*(3*n^2+17*n+26)/24 ;     end if; end proc: # R. J. Mathar, Sep 23 2016 MATHEMATICA f[k_] := k + 1; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[2, t[n]]; Join[{1}, Table[a[n], {n, 2, 30}]] (* Clark Kimberling, Dec 31 2011 *) Join[{1}, Table[n (n - 1) (3 n^2 + 17 n + 26) / 24, {n, 2, 40}]] (* Vincenzo Librandi, Sep 30 2018 *) CoefficientList[Series[(-1 - x - 6 x^2 + 9 x^3 - 5 x^4 + x^5)/(-1 + x)^5, {x, 0, 30}], x] (* Stefano Spezia, Sep 30 2018 *) From Robert A. Russell, Oct 04 2018: (Start) Prepend[Table[Coefficient[Product[x+j, {j, 2, k}], x, k-3], {k, 3, 40}], 1] Prepend[LinearRecurrence[{5, -10, 10, -5, 1}, {6, 26, 71, 155, 295}, 40], 1] (End) PROG (GAP) Concatenation([1], List([2..40], n->n*(n-1)*(3*n^2+17*n+26)/24)); # Muniru A Asiru, Sep 29 2018 (MAGMA) [1] cat [n*(n-1)*(3*n^2 + 17*n + 26)/24: n in [2..40]]; // Vincenzo Librandi, Sep 30 2018 (PARI) Vec(x*(-1-x-6*x^2+9*x^3-5*x^4+x^5)/(-1+x)^5+O(x^30)) \\ Stefano Spezia, Sep 30 2018 CROSSREFS Equals A059302(n+2) + 1, n>1. Partial sums of A005564. For n>1, a(n) = A145324(n+1,3). Sequence in context: A190095 A135036 A166796 * A241452 A175898 A255870 Adjacent sequences:  A001698 A001699 A001700 * A001702 A001703 A001704 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 22:00 EDT 2018. Contains 316378 sequences. (Running on oeis4.)