login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000057 Primes dividing all Fibonacci sequences.
(Formerly M0856 N0326)
42
2, 3, 7, 23, 43, 67, 83, 103, 127, 163, 167, 223, 227, 283, 367, 383, 443, 463, 467, 487, 503, 523, 547, 587, 607, 643, 647, 683, 727, 787, 823, 827, 863, 883, 887, 907, 947, 983, 1063, 1123, 1163, 1187, 1283, 1303, 1327, 1367, 1423, 1447, 1487, 1543 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Here a Fibonacci sequence is a sequence which begins with any two integers and continues using the rule s(n+2) = s(n+1) + s(n). These primes divide at least one number in each such sequence. - Don Reble, Dec 15 2006

Primes p such that the smallest positive m for which Fibonacci(m) == 0 (mod p) is m=p+1. In other words, the n-th prime p is in this sequence iff A001602(n)=p+1. - Max Alekseyev, Nov 23 2007

Cubre and Rouse comment that this sequence is not known to be infinite. - Charles R Greathouse IV, Jan 02 2013

Number of terms up to 10^n: 3, 7, 38, 249, 1894, 15456, 130824, 1134404, 10007875, 89562047, .... - Charles R Greathouse IV, Nov 19 2014

These are also the fixed points of sequence A213648 which gives the minimal number of 1's such that n*[n; 1,..., 1, n] = [x; ..., x], where [...] denotes simple continued fractions. - M. F. Hasler, Sep 15 2015

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Christian G. Bower and T. D. Noe, Table of n, a(n) for n = 1..1000

U. Alfred, Primes which are factors of all Fibonacci sequences, Fib. Quart., 2 (1964), 33-38.

B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014.

D. M. Bloom, On periodicity in generalized Fibonacci sequences, Am. Math. Monthly 72 (8) (1965) 856-861.

Paul Cubre and Jeremy Rouse, Divisibility properties of the Fibonacci entry point, arXiv:1212.6221 [math.NT], 2012.

Ron Knott. General Fibonacci Series

PROG

(PARI) select(p->my(a=0, b=1, n=1, t); while(b, t=b; b=(a+b)%p; a=t; n++); n>p, primes(1000)) \\ Charles R Greathouse IV, Jan 02 2013

(PARI) is(p)=fordiv(p-1, d, if(((Mod([1, 1; 1, 0], p))^d)[1, 2]==0, return(0))); fordiv(p+1, d, if(((Mod([1, 1; 1, 0], p))^d)[1, 2]==0, return(d==p+1 && isprime(p)))) \\ Charles R Greathouse IV, Jan 02 2013

(PARI) is(p)=if((p-2)%5>1, return(0)); my(f=factor(p+1)); for(i=1, #f~, if((Mod([1, 1; 1, 0], p)^((p+1)/f[i, 1]))[1, 2]==0, return(0))); isprime(p) \\ Charles R Greathouse IV, Nov 19 2014

CROSSREFS

Subsequence of A064414.

Cf. A001602, A079346, A106535, A213648.

Sequence in context: A002230 A106865 A267504 * A037231 A248525 A082449

Adjacent sequences:  A000054 A000055 A000056 * A000058 A000059 A000060

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Don Reble (djr(AT)nk.ca), Nov 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 21:23 EST 2016. Contains 279011 sequences.