This site is supported by donations to The OEIS Foundation.

CiteH

From OeisWiki
Jump to: navigation, search


"... we have been inspired by the now classical work of Zeilberger on holonomic sequences [19], the PhD thesis and articles of Colton [2], [3], [4] on automated conjecture-making in number theory, and of course the Online Encyclopedia of Integer Sequences (OEIS) [16]. ..." [Andreas Holmstrom, 2016]

"We argue that a database built out of zeta types and Tannakian symbols could lead to interesting discoveries, similar to what has been achieved for example by the OEIS, the LMFDB, and other existing databases of mathematical objects." [Andreas Holmstrom and Torstein Vik, 2017]

"The On-Line Encyclopedia of Integer Sequences (OEIS) is a browsable and searchable online resource launched in 1996 that grew out of N.J.A. Sloane's 1973 book A Handbook of Integer Sequences. Starting in 1994, there are 2,752 references to it in zbMATH. Of these, more than 70% cite OEIS as a whole, while the remaining refer to one or, in about 5% of the cases, several actual entries of the database (with a single reference citing as many as 14 sequences in one case). However, in contrast to the previous example, the references to the online service have quickly [replaced] those to the printed handbook. The easy usability of the OEIS and its powerful search features (which benefit from the rather simple data shape of integer sequences) appear to be a crucial factor here, making it a model for highly findable, accessible, and reusable mathematical data. ..." [Klaus Hulek et al., 2019]

"...the useful database OEIS played a key role in linking the various structures in different areas some, of which will be briefly described ..." [Hwang and Jin, 2019]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with H.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. J. Haack, "The Mathematics of Steve Reich's Clapping Music," in Bridges: Mathematical Connections in Art, Music and Science: Conference Proceedings, 1998, Reza Sarhangi (ed.), 87-92.
  2. Robert Haas, "Goldbach, Hurwitz, and the infinitude of primes: weafing a proof across the centuries", Math. Intell. 36 (2014) 54-60 doi:10.1007/s00283-013-9402-8
  3. Robert Haas, Cographs, arXiv:1905.12627 [math.GM], 2019. (A001200, A309114, A309115, A309116)
  4. Haase, Christian; Melnikov, Ilarion V. The reflexive dimension of a lattice polytope. Ann. Comb. 10 (2006), no. 2, 211-217.
  5. Benjamin Hackl, C Heuberger, H Prodinger, Reductions of Binary Trees and Lattice Paths induced by the Register Function, arXiv preprint arXiv:1612.07286, 2016
  6. B. Hackl, C. Heuberger, H. Prodinger, S. Wagner, Analysis of Bidirectional Ballot Sequences and Random Walks Ending in their Maximum, arXiv preprint arXiv:1503.08790, 2015
  7. Benjamin Hackl, Helmut Prodinger, The Necklace Process: A Generating Function Approach, arXiv:1801.09934 [math.PR], 2018. (A000358)
  8. L. Haddad, C. Helou, Finite Sequences Dominated by the Squares, Journal of Integer Sequences, 18 (2015) #15.1.8.
  9. JA Haddley, Doubling Hypercuboids, Preprint 2015; http://www.joelhaddley.co.uk/University/pdf/cuboids.pdf
  10. Petros Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016) #16.8.2.
  11. Petros Hadjicostas, Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer, Journal of Integer Sequences, 20 (2017), #17.8.5. PDF
  12. Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow J. of Combinatorics and Number Theory (2020) Vol. 9, No. 2, 173–186. doi:10.2140/moscow.2020.9.173 (https://oeis.org/transforms2.html)
  13. Felix M. Haehl, R. Loganayagam, Prithvi Narayan, Mukund Rangamani. Classification of out-of-time-order correlators. arXiv:1701.02820, 2017.
  14. Jan Hagberg, Centrality Testing and the Distribution of the Degree Variance in Bernoulli Graphs, International Sunbelt Social Network Conference, April 2001.
  15. T. R. Hagedorn, Computation of Jacobsthal's function h(n) for n<50. Math. Comp. 78 (2009), 1073-1087 doi:10.1090/S0025-5718-08-02166-2
  16. J. Haglund, A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants, PDF
  17. J. Haglund, A. Garsia, A polynomial expression for the character of diagonal harmonics, 2013; http://www.math.upenn.edu/~jhaglund/preprints/formula2.pdf
  18. Jim Haglund and Mirko Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, PDF, Eur. J. Comb 33 (4) 477-487 (2012) doi:10.1016/j.ejc.2011.10.007.
  19. Claude W. Haigh, John W. Kennedy, Louis V. Quintas, Counting and coding identity trees with fixed diameter and bounded degree, Discrete Applied Mathematics, Volume 7, Issue 2, February 1984, Pages 141-160.
  20. Harri Hakula, Pauliina Ilmonen, Vesa Kaarnioja, Computation of extremal eigenvalues of high-dimensional lattice-theoretic tensors via tensor-train decompositions, arXiv:1705.05163 [math.NA], 2017.
  21. Halbeisen, Lorenz, Fans and bundles in the graph of pairwise sums and products. Electron. J. Combin. 11 (2004), no. 1, Research Paper 6, 11 pp.
  22. Lorenz J. Halbeisen, COMBINATORIAL SET THEORY, Overture: Ramsey's Theorem, Springer Monographs in Mathematics, 2012, Part 1, 9-24, doi:10.1007/978-1-4471-2173-2_2
  23. L. Halbeisen and N. Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999) 138-150. (ps, pdf)
  24. L. Halbeisen and N. Hungerbuehler, Dual form of combinatorial problems and Laplace techniques, The Fibonacci Quarterly 38 (2000) 395-407. (ps, pdf)
  25. Lorenz Halbeisen, Norbert Hungerbühler, Congruent number elliptic curves with rank at least two, arXiv:1809.02037 [math.NT], 2018. (A003273)
  26. Lorenz Halbeisen, Norbert Hungerbühler, Congruent Number Elliptic Curves Related to Integral Solutions of m^2 = n^2 + nl + n^2, J. Int. Seq., Vol. 22 (2019), Article 19.3.1. HTML (A003273)
  27. Lorenz Halbeisen and Saharon Shelah, Consequences of arithmetic for set theory, The Journal of Symbolic Logic, vol. 59 (1994), pp. 30-40. (ps, pdf )
  28. T. C. Hales, Mathematics in the Age of the Turing Machine, PDF.
  29. Jonas Hall, Thomas Lingefjärd, Mathematical Modeling: Applications with GeoGebra, New York, NY : Wiley, 2016, 570 p.
  30. JS Hall, MA Novotny, T Neuhaus, K Michielsen, A Study of Spanning Trees on a D-Wave Quantum Computer, Physics Procedia 68 ( 2015 ) 56 – 60; 28th Annual CSP Workshop on “Recent Developments in Computer Simulation Studies in Condensed Matter Physics”, CSP 2015
  31. R. W. Hall and P. Klingsberg, Asymmetric rhythms and tiling canons, Amer. Math. Monthly, 113 (2006), 887-896.
  32. E. Hallouin, M. Perret, A Graph Aided Strategy to Produce Good Recursive Towers over Finite Fields, arXiv preprint arXiv:1503.06591, 2015
  33. Tom Halverson, Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018. (A007318, A008313, A049020, A064189, A096713, A111062)
  34. T. Halverson and M. Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150, 2013
  35. Zachary Hamaker, Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018. (A001405, A003583, A027306, A039622, A060855)
  36. Z Hamaker, E Marberg, B Pawlowski, Involution words II: braid relations and atomic structures, arXiv preprint arXiv:1601.02269, 2016
  37. Zachary Hamaker, Eric Marberg, Brendan Pawlowski, Fixed-point-free involutions and Schur P-positivity, arXiv:1706.06665 [math.CO], 2017.
  38. Adel Hamdi, A New Formula of q-Fubini Numbers via Gončarov polynomials, arXiv:1908.06939 [math.CO], 2019.
  39. Thomas Hameister, Sujit Rao, Connor Simpson, Chow rings of matroids and atomistic lattices, arXiv:1802.04241 [math.CO], 2017. (A008292)
  40. Gordon Hamilton, Three integer sequences from recreational mathematics, Video, 2013?, http://youtu.be/7efCz2FvUDI
  41. Gordon Hamilton, Kiran S. Kedlaya, and Henri Picciotto, Square–Sum Pair Partitions, College Mathematics Journal 46.4 (2015): 264-269.
  42. Richard H. Hammack, Paul C. Kainen, Graph Bases and Diagram Commutativity, Graphs and Combinatorics (2018), Vol. 34, Issue 4, 523–534. doi:10.1007/s00373-018-1891-y (A085408)
  43. Abdallah Hammam, Some new Formulas for the Kolakoski Sequence A000002, Turkish Journal of Analysis and Number Theory, 2016, Vol. 4, No. 3, 54-59; at http://pubs.sciepub.com/tjant/4/3/1; doi:10.12691/tjant-4-3-1
  44. M. Hampejs, N. Holighaus, L. Toth and C. Wiesmeyr, On the subgroups of the group Z_m X Z_n, arXiv:1211.1797, 2012; Journal of Numbers 2014 (2014) ID 491428 doi:10.1155/2014/491428
  45. M. Hampejs, L. Toth, On the subgroups of finite Abelian groups of rank three, Annales Univ. Sci. Budap. 39 (2013) 111-124
  46. Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths (2008); arXiv:0804.1849
  47. Guo-Niu Han, Discovering hook length formulas by expansion technique (2008); arXiv:0805.2464
  48. Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications (2008); arXiv:0805.1398
  49. Guo-Niu Han, Enumeration of Standard Puzzles
  50. Guo-Niu Han, Hankel Continued fractions and Hankel determinants of the Euler numbers, arXiv:1906.00103 [math.CO], 2019. (A000111, A122852)
  51. Guo-Niu Han, Shi-Mei Ma, Derivatives, Eulerian polynomials and the $g$-indexes of Young tableaux, arXiv:2006.14064 [math.CO], 2020. (A094503, A139605)
  52. G.-N. Han, H. Xiong, Difference operators for partitions and some applications, arXiv preprint arXiv:1508.00772, 2015
  53. Lee Zheng Han, Mr Chia Vui Leong, The Walk of Maximal Planar Graphs, 2018. PDF (A000109)
  54. Amihay Hanany and Rak-Kyeong Seong, Brane Tilings and Reflexive Polygons, arXiv:1201.2614, 2012
  55. Amihay Hanany and Rak-Kyeong Seong, Brane Tilings and Specular Duality, arXiv:1206.2386, 2012
  56. Jaroslav Hančl, Simon Kristensen, Metrical irrationality results related to values of the Riemann zeta-function, arXiv:1802.03946 [math.NT], 2018. (A073009)
  57. D. Handelman, Invariants for critical dimension groups and permutation-Hermite equivalence, arXiv preprint arXiv:1309.7417, 2013
  58. Julia Handl and Joshua Knowles, An Investigation of Representations and Operators for Evolutionary Data Clustering with a Variable Number of Clusters, in Parallel Problem Solving from Nature-PPSN IX, Lecture Notes in Computer Science, Volume 4193/2006, Springer-Verlag.
  59. H. H. Hansen, C. Kupke, J. Rutten, Stream Differential Equations: Specification Formats and Solution Methods, 2014; http://oai.cwi.nl/oai/asset/22555/22555D.pdf
  60. P. Hansen, How Far Should, Is And Could Be Conjecture-Making Automated in Graph Theory?, Les Cahiers du GERAD, August 2002. (ps, pdf)
  61. P. Hansen, M. Aouchiche, G. Caporossi and D. Stevanovic, What Forms Do Interesting Conjectures Have in Graph Theory?, Les Cahiers du GERAD, August 2002. (ps, pdf)
  62. Pierre Hansen, Alain Hertz, Cherif Sellal, Damir Vukičević, Mustapha Aouchiche, Gilles Caporossi, Edge Realizability of Connected Simple Graphs, MATCH Communications in Mathematical and in Computer Chemistry 78:689-712, 2017.
  63. H Hanslik, E Hetmaniok, I Sobstyl, et al., Orbits of the Kaprekar's transformations–some introductory facts, Zeszyty Naukowe Politechniki ŚSlaskiej, Seria: Matematyka Stosowana z. 5, Nr kol. 1945; 2015; file:///Users/njasloane/Downloads/hanslik_znps_mat_stosow_05_2015.pdf
  64. A. J. Hanson, G. Ortiz, A. Sabry and Y.-T. Tai, Discrete Quantum Theories, arXiv preprint arXiv:1305.3292, 2013
  65. A. J. Hanson, G. Ortiz, A. Sabry, Y.-T. Tai, Discrete quantum theories, (A different version) doi:10.1088/1751-8113/47/11/115305, J. Phys. A: Math. Theor. 47 (2014) 115305 PDF
  66. Mary Grace Hanson and David A. Nash, Minimal and maximal Numbrix puzzles, arXiv:1706.09389 [math.CO], 2017.
  67. C. R. H. Hanusa, A Generalized Binet's Formula for kth Order Linear Recurrences. A Markov Chain Approach, Math Senior Thesis, April 2001.
  68. Hanusa, Christopher R. H., A Gessel-Viennot-type method for cycle systems in a directed graph. Electron. J. Combin. 13 (2006), no. 1, Research Paper 37, 28 pp.
  69. Christopher R. H. Hanusa, Rishi Nath, The number of self-conjugate core partitions, arXiv:1201.6629, 2012.
  70. Christopher R. H. Hanusa, Thomas Zaslavsky, A q-queens problem. VII. Combinatorial types of nonattacking chess riders, arXiv:1906.08981 [math.CO], 2019. (A202654, A202655, A202656, A202657, A193981, A193982, A193983, A193984)
  71. Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. III. Partial queens, arXiv preprint arXiv:1402.4886, 2014
  72. Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, 2016
  73. B. Hao, Fractals from genomes: exact solutions of a biology-inspired problem, Physica A282 (2000) 225-246.
  74. B. Hao, H. Xie, Z. Yu and G. Chen, Avoided strings in bacterial complete genomes and a related combinatorial problem, Ann. Comb. 4, No. 3-4, 247-255 (2000).
  75. B. Hao, H. Xie, Z. Yu and G. Chen, Factorisable language: From dynamics to complete genomes, Physica A288 (2000) 10-20.
  76. Sajed Haque, Discriminators of Integer Sequences, arXiv:1702.00802, 2017
  77. Sajed Haque, Jeffrey Shallit, Discriminators and k-Regular Sequences, arXiv:1605.00092, 2016
  78. Masaaki Harada, E Novak, VD Tonchev, The weight distribution of the self-dual $[128, 64] $ polarity design code, arXiv preprint arXiv:1602.04661, 2016
  79. Masaaki Harada, Ken Saito, Binary linear complementary dual codes, arXiv:1802.06985 [math.CO], 2018. (A005783)
  80. Brady Haran, Numberphile Podcast, <a href="https://www.youtube.com/watch?v=mNk_MfFKnuY">The Number Collector (with Neil Sloane)</a>, August 2019.
  81. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=cZkGeR9CWbk">Primes on the Moon (Lunar Arithmetic)</a>, Numberphile video, Nov 2018.
  82. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=OeGSQggDkxI">What Number Comes Next?</a>, Numberphile video, Nov 2018.
  83. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=_UtCli1SgjI">Terrific Toothpick Patterns</a>, Numberphile video, Dec 2018.
  84. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=RGQe8waGJ4w">The Trapped Knight</a>, Numberphile video, Jan 2019.
  85. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=bRIL9kMJJSc">How many ways can circles overlap?</a>, Numberphile video, April 2019.
  86. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=IN1fPtY9jYg">Peaceable Queens</a>, Numberphile video, May 2019.
  87. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=etMJxB-igrc">Don't Know (the Van Eck Sequence)</a>, Numberphile video, June 2019.
  88. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=pAMgUB51XZA">Amazing Graphs (I)</a>, Numberphile video, August 2019.
  89. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=o8c4uYnnNnc">Amazing Graphs (II)</a>, Numberphile video, August 2019.
  90. Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=j0o-pMIR8uk">Amazing Graphs (III)</a>, Numberphile video, August 2019.
  91. F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
  92. Frank Harary, Edgar M. Palmer, Ronald C. Read, On the cell-growth problem for arbitrary polygons, Discrete Mathematics, Volume 11, Issue 3, 1975, Pages 371-389.
  93. F. Harary, E. M. Palmer and R. W. Robinson, Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), 175-181. (ps, pdf)
  94. Heiko Harborth, On h-perfect numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 57-62; http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from57to62.pdf.
  95. M. Harborth, Strukturuntersuchungen für Shop-Scheduling-Probleme: Anzahlprobleme, potentielle Optimalität und neue Enumerationsalgorithmen, PhD Thesis, Otto-von-Guericke-Universität Magdeburg, 1999.
  96. Steven N. Harding, Alexander W. N. Riasanovsky, Moments of the weighted Cantor measures, arXiv:1908.05358 [math.FA], 2019. (A308612, A308613, A308614, A308615)
  97. K. Hare, Multisectioning, Rational Poly-Exponential Functions and Parallel Computation, M.Sc. Thesis, February 2001. (PostScript , Pdf)
  98. Kevin G. Hare, Ghislain McKay, arXiv:1506.01313 Some properties of even moments of uniform random walks, 2015. (A001263)
  99. Kevin G. Hare and Soroosh Yazdani, "Further Results on Derived Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.2.7.
  100. T. Harju and D. Nowotka, Counting bordered and primitive words with a fixed weight, Theoret. Comput. Sci. 340 (2005), no. 2, 273-279.
  101. Amit Harlev, Charles R. Johnson, Derek Lim, The Doubly Stochastic Single Eigenvalue Problem: A Computational Approach, arXiv:1908.03647 [math.SP], 2019. (A110143)
  102. Glyn Harman, Counting Primes whose Sum of Digits is Prime, Journal of Integer Sequences, Vol. 15 (2012), Article #12.2.2
  103. L. H. Harper, The Range of a Steiner Operation, arXiv preprint arXiv:1608.07747, 2016
  104. L. H. Harper, The edge-isoperimetric problem on Sierpinski graphs, arXiv preprint arXiv:1610.02089, 2016
  105. Joshua Harrington, Lenny Jones, and Alicia Lamarche, Characterizing Finite Groups Using the Sum of the Orders of the Elements, International Journal of Combinatorics, Volume 2014, Article ID 835125, 8 pages; doi:10.1155/2014/835125
  106. Bob Harris, Counting nonomino tilings and other things of that ilk, 2010
  107. M. Harris and N. Dershowitz, Ordered Construction Of Combinatorial Objects, preprint.
  108. P. E. Harris, E. Insko, L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055, 2013
  109. William F. Harris, Ralph O. Erickson, Tubular arrays of spheres: Geometry, continuous and discontinuous contraction, and the role of moving dislocations, Journal of Theoretical Biology, Volume 83, Issue 2, 21 March 1980, Pages 215-246.
  110. Zachary Harris, Joel Louwsma, On Arithmetical Structures on Complete Graphs, arXiv:1909.02022 [math.NT], 2019. (A002967)
  111. J. Harrison, Isolating critical cases for reciprocals using integer factorization, ARITH-16, June 2003. (ps, pdf)
  112. Stephanie L. Harshbarger, Barton L. Willis, The binomial transform of p-recursive sequences and the dilogarithm function, arXiv:1910.06928 [math.CA], 2019.
  113. Gus L. W. Hart and Rodney W. Forcade, Generating derivative structures: Algorithm and applications (2008); arXiv:0804.3544
  114. Stephen G. Hartke and A. J. Radcliffe, Signatures of Strings, Annals of Combinatorics 17 (1) pp.131-150 March, 2013; http://www.combinatorics.net/Annals/Abstract/17_1_131.aspx
  115. Anna M. Hartkopf, Günter M. Ziegler, Adopt a Polyhedron–A Citizen Art Project in Mathematics, Bridges 2018 Conference Proceedings. PDF (A000944)
  116. Rebecca Hartman-Baker, The Diffusion Equation Method for Global Optimization and Its Application to Magnetotelluric Geoprospecting
  117. Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019. (A000108, A000139, A000142, A001181, A005802, A006012, A022493, A022558, A029759, A033321, A078482, A097483, A098569, A129698, A214358, A223034, A223905, A224318, A245233)
  118. Scott Harvey-Arnold, Steven J. Miller, Fei Peng, Distribution of missing differences in diffsets, arXiv:2001.08931 [math.CO], 2020. (A103295)
  119. Mahadi Hasan, Md. Masbaul Alam Polash, An Efficient Constraint-Based Local Search for Maximizing Water Retention on Magic Squares, Emerging Trends in Electrical, Communications, and Information Technologies, Lecture Notes in Electrical Engineering book series (LNEE 2019) Vol. 569, 71-79. doi:10.1007/978-981-13-8942-9_7 (A006052)
  120. Mahdi J. Hasan Al-Kaabi, On pre-Lie Magnus expansion, arXiv:1707.01726 [math.CO], 2017.
  121. Hayder Raheem Hashim and Szabolcs Tengely, Solutions of a generalized Markoff equation in Fibonacci numbers, Mathematica Slovaca (2020) Vol. 70, Issue 5, 1069–1078. doi:10.1515/ms-2017-0414 (A002559)
  122. Mara Hashuga, Megan Herbine, Alathea Jensen, Numerical Semigroups Generated by Quadratic Sequences, arXiv:2009.01981 [math.GR], 2020. (A336640)
  123. Haskell, Haskell Interface to OEIS (Describes interface to the old OEIS)
  124. Haskell, http://hackage.haskell.org/package/oeis-0.3.0, Haskell Interface to new OEIS.
  125. M. F. Hasler, R. J. Mathar, Corrigendum to "Paths and circuits in finite groups", Disc. Math. 22 (1978) 263", arXiv:1510.07997 (2015)
  126. Adib Hassan, Po-Chien Chung, Wayne B. Hayes, Graphettes: Constant-time determination of graphlet and orbit identity including (possibly disconnected) graphlets up to size 8, arXiv:1708.04341 [cs.DS], 2017.
  127. Mehdi Hassani, "Derangements and Applications", J. Integer Sequences, Volume 6, 2003, Article 03.1.2.
  128. Mehdi Hassani, Approximation of the Multiplication Table Function (2006), arXiv:math/0603644.
  129. M. Hassani, Some remarks on a determinant related to the prime counting function, The 8th Seminar on Linear Algebra and its Applications, 13-14th May 2015, University of Kurdistan, Iran, http://www.nlaa8.ir/EN-Final.pdf#page=147
  130. Sho Hasui, Hideya Kuwata, Mikiya Masuda, Seonjeong Park, Classification of toric manifolds over an n-cube with one vertex cut, arXiv:1705.07530 [math.AT], 2017.
  131. Kris Hatch, Presentation of the Motzkin Monoid, Senior Thesis, Univ. Cal. Santa Barbara, 2012; http://ccs.math.ucsb.edu/senior-thesis/Kris-Hatch.pdf
  132. Nils Haug, T Prellberg, G Siudem, Scaling in area-weighted generalized Motzkin paths, arXiv preprint arXiv:1605.09643, 2016
  133. P. Haukkanen, M. Mattila, J. K. Merikoski and T. Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, 16 (2013), #13.1.2.
  134. Pentti Haukkanen and Jorma K. Merikoski, Some formulas for numbers of line segments and lines in a rectangular grid, arXiv:1108.1041, 2011.
  135. Pentti Haukkanen and Jorma K. Merikoski, Asymptotics for numbers of line segments and lines in a square grid, arXiv:1110.6864, 2011
  136. Pentti Haukkanen, Jorma Merikoski, Seppo Mustonen, Some polynomials associated with regular polygons, Acta Univ. Sapientiae, Mathematica, 6, 2 (2014) 178-193. (A05312, A132460, A136672)
  137. Pentti Haukkanen, Varanasi Sitaramaiah, Bi-unitary multiperfect numbers, I, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 93—171. doi:10.7546/nntdm.2020.26.1.93-171 (A189000)
  138. J.-C. Hausmann, Counting polygon spaces, Boolean functions and majority games, arXiv preprint arXiv:1501.07553, 2015
  139. Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003.
  140. Ammar Hawbani, Xingfu Wang, Saleem Karmoshi, Hassan Kuhlani, Aiman Ghannami, Adili Abudukelimu, Rafia Ghoul, GLT: Grouping Based Location Tracking for Object Tracking Sensor Networks, Wireless Communications and Mobile Computing, Volume 2017. doi:10.1155/2017/4509697
  141. Graham H. Hawkes, An Elementary Proof of a Formula for SYT, arXiv preprint arXiv:1310.5919, 2013
  142. M. J. Hay, J. Schiff, N. J. Fisch, Maximal energy extraction under discrete diffusive exchange- arXiv preprint arXiv:1508.03499, 2015
  143. MJ Hay, J Schiff, NJ Fisch, Available free energy under local phase space diffusion, arXiv preprint arXiv:1604.08573, 2016
  144. M. J. Hay, J. Schiff, N. J. Fisch, On extreme points of the diffusion polytope, Physica A 473 (2017) 225–236. doi:10.1016/j.physa.2017.01.038
  145. Kohei Hayashi, Taiki Yamaguchi, Yohei Sugawara, Shin-ichi Maeda, Einconv: Exploring Unexplored Tensor Decompositions for Convolutional Neural Networks, arXiv:1908.04471 [cs.LG], 2019. (A000041)
  146. B. Hayes, A Question of Numbers, in American Scientist.
  147. B. Hayes, Calculemus!, American Scientist, 96 (Sep-Oct 2008), 362-366
  148. Brain Hayes, An Adenture in the Nth Dimension, pp. 30-42 of M. Pitici, editor, The Best Writing on Mathematics 2012, Princeton Univ. Press, 2012. See p. 42.
  149. Brian Hayes, Joshua Trees and Toothpicks, Feb, 8, 2013.
  150. David Hayes, Kaveh Khodjasteh, Lorenza Viola and Michael J. Biercuk, Reducing sequencing complexity in dynamical quantum error suppression by Walsh modulation, arXiv:1109.6002, 2011
  151. Kathryn Haymaker and Sara Robertson, Counting Colorful Tilings of Rectangular Arrays, Journal of Integer Sequences, Vol. 20 (2017), Article 17.5.8.
  152. Song He, Fei Teng, Yong Zhang, String Correlators: Recursive Expansion, Integration-by-Parts and Scattering Equations, arXiv:1907.06041 [hep-th], 2019. Also in Journal of High Energy Physics (2019), 2019:85. doi:10.1007/JHEP09(2019)085 (A000110, A006351)
  153. Tian-Xiao He, A symbolic operator approach to power series transformation-expansion formulas, JIS 11 (2008) 08.2.7
  154. Tian-Xiao He, Half Riordan array sequences, Linear Algebra and its Applications (2020) Vol. 604, 236-264. doi:10.1016/j.laa.2020.06.019
  155. Tian-Xiao He, One-pth Riordan Arrays in the Construction of Identities, arXiv:2011.00173 [math.CO], 2020. (A000984, A001764, A001850)
  156. Tian-Xiao He, LW Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra and its Applications, Volume 507, 15 October 2016, Pages 77–95.
  157. T.-X. He, L. W. Shapiro, doi:10.1016/j.laa.2017.06.025 Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41.
  158. Tian-Xiao He, Louis Shapiro, Palindromes and Pseudo-involution Multiplication, Linear Algebra and its Applications (2020) Vol. 593, 1-17. doi:10.1016/j.laa.2020.01.031
  159. Tian-Xiao He, Peter J.-S. Shiue, "An Approach to the Construction of Linear Divisibility Sequences of Higher Orders", Journal of Integer Sequences, Vol. 20 (2017), Article 17.9.3. PDF
  160. Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062. doi:10.3934/era.2020057 (A000032, A000041, A000045, A000129, A000330, A001045, A028297, A097600, A122075, A135929, A163271, A165998, A198834)
  161. Tian-Xiao He, Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Mathematics, Volume 309, Issue 12, 28 June 2009, Pages 3962-3974.
  162. Yang-Hui He, Vishnu Jejjala, Cyril Matti, Brent D. Nelson, Michael Stillman, doi:10.1007/s00220-015-2416-7 The geometry of generations, Commun Math. Phys. 339 (1) (2015) 149-190
  163. YH He, V Jejjala, L Pontiggia, Patterns in Calabi--Yau Distributions, arXiv preprint arXiv:1512.01579, 2015.
  164. Yang-Hui He, Minhyong Kim, Learning Algebraic Structures: Preliminary Investigations, arXiv:1905.02263 [cs.LG], 2019. (A000001, A002860, A027623)
  165. Y.-H. He, C. Matti, C. Sun, The Scattering Variety, arXiv preprint arXiv:1403.6833, 2014
  166. Y. He, W. Zhang, Sum relations for Lucas sequences, J. Int. Seq. 13 (2010) # 10.4.6
  167. Yang-Hui He, Rak-Kyeong Seong, Shing-Tung Yau, Calabi-Yau Volumes and Reflexive Polytopes, arXiv:1704.03462 [hep-th], 2017.
  168. A. Healy and S. Toub, Efficient Mesh Licensing, Computer Science 276r, Harvard University, May 2001.
  169. Daniel J. Heath and R. Robert Rdyberg, III, On Polyominoes and Digital Cameras, Mathematics Magazine, Vol. 90, No. 2 (April 2017), pp. 135-141. doi:10.4169/math.mag.90.2.135
  170. W. Hebisch and M. Rubey, Extended Rate, More Gfun, arXiv:math/0702086 , J. Symb. Comput. 46 (8) (2011) 889-903 doi:10.1016/j.jsc.2011.01.004
  171. W. Hebisch, M. Rubey, doi:10.1016/j.jsc.2011.01.004 Extended rate, more GFUN, J. Symb. Comput. 46 (2011) 889-903
  172. Pedro Hecht, Post-Quantum Cryptography: S381 Cyclic Subgroup of High Order, arXiv:1704.07238 [cs.CR], 2017.
  173. P. Hecht, Post-Quantum Cryptography: S_381 Cyclic Subgroup of High Order, International Journal of Advanced Engineering Research and Science (IJAERS, 2017) Vol. 4, Issue 6, 78-86. doi:10.22161/ijaers.4.6.10 (A002110, A007504, A007623)
  174. Albrecht Heeffer, Board Games: Throughout the History and Multidimensional Spaces by Jorma Kyppö, (Book Review) The Mathematical Intelligencer (2020). doi:10.1007/s00283-020-09999-5
  175. Robert Heffernan, Desmond MacHale, On the order of a smallest group with a given representation degree, Irish Math. Soc. Bulletin (2019) Number 84, 21–24. PDF (A220470)
  176. P. Hegarty, On the notion of balance in social network analysis, arXiv preprint arXiv:1212.4303, 2012
  177. P. Hegarty and A. Martinsson, On the existence of accessible paths in various models of fitness landscapes, arXiv:1210.4798, 2012
  178. Hannes Heikinheimo, Heikki Mannila and Jouni K. Seppanen, Finding Trees from Unordered 01 Data, in Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, Volume 4213/2006, Springer-Verlag.
  179. Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute (Massachusetts, 2019). PDF (A000124, A002620, A069999, A138554)
  180. Dalton Heilig, Pascal's Triangle in Difference Tables and an Alternate Approach to Exponential Functions, Rose-Hulman Undergraduate Mathematics Journal, Vol. 18, Issue 2, Article 4, 2018. Abstract
  181. Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018. Also in Proceedings of the 30th Conference on Formal Power Series and Algebraic Combinatorics (Hanover), Séminaire Lotharingien de Combinatoire 80B (2018) Article #31. PDF (A001006, A002026, A005322, A005323, A005324, A005325, A005773, A009766, A011782, A036908, A045623, A054391, A054392, A054393, A054394, A058396, A062109, A080934, A142586, A169792, A169793, A169794, A169795, A169796, A169797)
  182. W. R. Heinson, Simulation studies on shape and growth kinetics for fractal aggregates in aerosol and colloidal systems, PhD Dissertation, Kansas State Univ., Manhattan, Kansas, 2015; http://krex.k-state.edu/dspace/bitstream/handle/2097/19714/WilliamHeinson2015.pdf?sequence=1; see page 49.
  183. Tomáš Hejda, Vítězslav Kala, Ternary quadratic forms representing arithmetic progressions, arXiv:1906.02538 [math.NT], 2019. (A286885)
  184. Daniel Heldt, On the mixing time of the face flip–and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016; https://depositonce.tu-berlin.de/bitstream/11303/5553/5/heldt_daniel.pdf
  185. Geir T. Helleloid, Fernando Rodriguez-Villegas, Counting quiver representations over finite fields via graph enumeration, Journal of Algebra 322 (5) (2009) 1689-1704 doi:10.1016/j.jalgebra.2009.04.032
  186. T. Helleseth and A. Kholosha, Bent functions and their connections to combinatorics, in Surveys in Combinatorics 2013, edited by Simon R. Blackburn, Stefanie Gerke, Mark Wildon, Camb. Univ. Press, 2013.
  187. Robert Hellmann and Eckard Bich, A systematic formulation of the virial expansion for nonadditive interaction potentials, J. Chem. Phys. 135, 084117 (2011); doi:10.1063/1.3626524 (7 pages)
  188. Michael Hellus, Anton Rechenauer, Rolf Waldi, Numerical Semigroups generated by Primes, arXiv:1908.09483 [math.NT], 2019. (A180306)
  189. Helmke, Uwe; Rosenthal, Joachim; Wang, Xiaochang Alex, Output feedback pole assignment for transfer functions with symmetries. SIAM J. Control Optim. 45 (2006), no. 5, 1898-1914 .
  190. Gottfried Helms, Bell Numbers, 2008.
  191. Keld Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic, Math. Program. Comput. 1, No. 2-3, 119-163 (2009) doi:10.1007/s12532-009-0004-6
  192. Ralf Hemmecke, Peter Paule, Silviu Radu, Construction of Modular Function Bases for Γ0(121) related to p(11n + 6), (2019). PDF (A001617)
  193. J. A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, 51 (1995), 291-313.
  194. A. Hendriks, Computations in Propositional Logic, PHD thesis, 1996.
  195. Dimitri Hendriks, Frits G. W. Dannenberg, Jorg Endrullis, Mark Dow and Jan Willem Klop, Arithmetic Self-Similarity of Infinite Sequences, arXiv:1201.3786 2012.
  196. Michael Hendriksen, Nils Kapust, On the comparison of incompatibility of split systems across different taxa sizes, arXiv:2004.00062 [q-bio.PE], 2020. (A318248)
  197. F. Heneghan, A. Sliva, Max-Min Up-Down Permutations, DePaul Discoveries: Vol. 2: Iss. 1, Article 1. Available at: http://via.library.depaul.edu/depaul-disc/vol2/iss1/1.
  198. Nadia Heninger, E. M. Rains and N. J. A. Sloane, doi:10.1016/j.jcta.2006.03.018 On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, A 113 (2006), no. 8, 1732-1745. arXiv:math.NT/0509316.
  199. A. Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011; http://repository.wit.ie/1693/1/AoifeThesis.pdf
  200. Aoife Hennessy, Bijections of Motzkin Paths Using Shifted Riordan Decompositions, Graphs and Combinatorics (2019) Vol. 35, No. 1, 169–187. doi:10.1007/s00373-018-1982-9
  201. Hennessy, Aoife; P. Barry, Generalized Stirling numbers, exponential Riordan arrays, and orthogonal polynomials. J. Integer Seq. 14 (2011), no. 8, Article 11.8.2, 14 pp.
  202. Joel A. Henningsen, Sequences Modulo Primes and Finite State Automata, Masters ' Thesis, University of South Alabama (2019). Abstract (A092832)
  203. Daniel R. Herber, Enhancements to the perfect matching approach for graph enumeration-based engineering challenges, Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2020). PDF (A000041, A000262, A005177, A056156, A289158) The On-Line Encyclopedia of Integer Sequences (OEIS) is a database containing thousands of integer sequences, many corresponding to different graph enumeration problems
  204. Daniel R. Herber, T Guo, JT Allison, Enumeration of Architectures with Perfect Matchings, in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016 August 21-24, Charlotte, North Carolina; DETC2016-60212; doi:10.1115/1.4036132 Download: http://systemdesign.illinois.edu/publications/Her16b.pdf
  205. H.-C. Herbig, D. Herden, C. Seaton, On compositions with x^2/(1-x), arXiv preprint arXiv:1404.1022, 2014
  206. M. Hering and B. J. Howard, The ring of evenly weighted points on the line, http://financialmath.math.uconn.edu/~hering/HH.pdf, 2012 arXiv:1211.3942
  207. M. Herman and J. Schiffman, Investigating home primes and their families, Math. Teacher, 107 (No. 8, 2014), 606-614. doi:10.5951/mathteacher.107.8.0606
  208. Samuel Herman, Eirini Poimenidou, Orbits of Hamiltonian Paths and Cycles in Complete Graphs, arXiv:1905.04785 [math.CO], 2019. (A000939, A000940, A089066, A099030)
  209. Keith Hermiston, The Smallest Critical Sets of Latin Squares, 12th International Conference on Signal Processing and Communication Systems (ICSPCS 2018), IEEE, 1-7. doi:10.1109/ICSPCS.2018.8631759
  210. Keith Hermiston, The Largest Critical Sets of Latin Squares, 53rd Annual Conference on Information Sciences and Systems (CISS), IEEE, 2019. doi:10.1109/CISS.2019.8692907 (A001222)
  211. Gecia Bravo Hermsdorff, Talmo Pereira, Yael Niv, Quantifying Humans' Priors Over Graphical Representations of Tasks, Spinning Strings and Correlation Functions in the AdS/CFT Correspondence, Springer Theses (Recognizing Outstanding Ph.D. Research), Springer, Cham, 2018. doi:10.1007/978-3-319-96661-8_30 (A000088)
  212. Sonia Hernandez, Drew R. Jones, and Mark Jesick, One class of Io-Europa-Ganymede triple cyclers, http://drewryanjones.com/assets/conf_paper_2017_no3.pdf, Conference paper 2017. See reference 12.
  213. J Hernández-Orallo, F Martínez-Plumed, U Schmid et al., Computer models solving intelligence test problems: Progress and implications, Artificial Intelligence, Volume 230, January 2016, Pages 74–107.
  214. A. Hernando, R. Hernando, A. Plastino and A. R. Plastino, The workings of the Maximum Entropy Principle in collective human behavior, arXiv:1201.0905, 2012
  215. Burghard Herrmann, Visibility in the pure model of golden spiral phyllotaxis, Mathematical Biosciences (2018), Vol. 301, 185-189. doi:10.1016/j.mbs.2018.05.003
  216. Burghard Herrmann, How integer sequences find their way into areas outside pure mathematics, The Fibonacci Quarterly (2019) Vol. 57, No. 5, 67-71. PDF (A190248, A190249, A190250, A190251, A295085)
  217. Sven Herrmann, Genocchi Numbers and f-Vectors of Simplicial Balls (2007), arXiv:math/0702172; European Journal of Combinatorics, Volume 29, Issue 5, July 2008, Pages 1087-1091.
  218. Martin Herschend, Peter Jørgensen, Classification of higher wide subcategories for higher Auslander algebras of type A, arXiv:2002.01778 [math.RT], 2020. (A001612)
  219. Herscovich, Estanislao; Solotar, Andrea; Representations of Yang-Mills algebras. Ann. of Math. (2) 173 (2011), no. 2, 1043-1080.
  220. Orli Herscovici, Study of the p,q-deformed Touchard polynomials, arXiv:1904.07674 [math.CO], 2019.
  221. Orli Herscovici and Toufik Mansour, Tsallis p,q-deformed Touchard polynomials and Stirling numbers, Russian Journal of Mathematical Physics, January 2017, Volume 24, Issue 1, pp. 37–50. doi:10.1134/S1061920817010034
  222. Orli Herscovici, Ross G. Pinsky, An identity involving stirling numbers of both kinds and its connection to right-to-left minima of certain set partitions, (2019). PDF (A048854)
  223. E. Hertel, C. Richter, Tiling Convex Polygons with Congruent Equilateral Triangles, Discrete & Computational Geometry, 2014, doi:10.1007/s00454-014-9576-7.
  224. A. Hertz and H. Melot, Counting the Number of Non-Equivalent Vertex Colorings of a Graph, Les Cahiers du GERAD G-2013-82; http://www.gerad.ca/~alainh/G1382.pdf
  225. CP Herzog, KW Huang, K Jensen, Universal Entanglement and Boundary Geometry in Conformal Field Theory, arXiv preprint arXiv:1510.00021, 2015
  226. K. Hessami Pilehrood, T. Hessami Pilehrood, Vacca-Type Series for Values of the Generalized Euler Constant Function and its Derivative, J. Integer Sequences, 13 (2010), #10.7.3.
  227. E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325–343.
  228. E Hetmaniok, M Pleszczynski, I Sobstyl, R Witula, Kaprekar's transformations. Part II–numerical results and intriguing corollaries, Position Papers of the Federated Conference on Computer Science and Information Systems pp. 97–104, ACSIS, Vol. 6; doi:10.15439/2015F15; https://pdfs.semanticscholar.org/1042/b2ca8b2d8c3812657221cb86eb7c04b3b1dd.pdf
  229. Edyta Hetmaniok, Damian Słota, Marcin Szczygieł, Mariusz Pleszczyński, Roman Wituła, Hermite-Bell's Polynomials for Negative Powers, Applications of Electromagnetics in Modern Engineering and Medicine (PTZE 2019). doi:10.23919/PTZE.2019.8781732
  230. Edyta Hetmaniok, Barbara Smoleń, Roman Wituła, The Stirling triangles, Proceedings of the Symposium for Young Scientists in Technology, Engineering and Mathematics (SYSTEM 2017), Kaunas, Lithuania, April 28, 2017, p. 35-41.
  231. Hetyei, Gábor, Central Delannoy numbers and balanced Cohen-Macaulay complexes. Ann. Comb. 10 (2006), no. 4, 443-462.
  232. Gabor Hetyei, Tchebyshev triangulations of stable simplicial complexes, Journal of Combinatorial Theory, Series A, Volume 115, Issue 4, May 2008, Pages 569-592.
  233. Gabor Hetyei, Enumeration by kernel positions, Advances in Applied Mathematics, Volume 42, Issue 4, May 2009, Pages 445-470.
  234. Gabor Hetyei, Delannoy Orthants of Legendre Polytopes, Discr. Comput. Geom. 42 (2009) 705, doi:10.1007/s00454-008-9131-5
  235. Gabor Hetyei, The short toric polynomial, FPSAC 2011, Reykjavik, DMTCS Proc. A0 (2011) 481-492
  236. G. Hetyei, Hurwitzian continued fractions containing a repeated constant and an arithmetic progression, arXiv:1211.2494, 2012
  237. G Hetyei, Efron's coins and the Linial arrangement, arXiv preprint arXiv:1511.04482, 2015
  238. Gábor Hetyei, Alternation acyclic tournaments, arXiv:1704.07245 [math.CO], 2017.
  239. S. Heubach, Tiling an n-by-m Area with Squares of Size up to k-by-k (m <= 5), Congressus Numerantium 140 (1999), pp. 43-64.
  240. Gábor Hetyei, The type B permutohedron and the poset of intervals as a Tchebyshev transform, University of North Carolina-Charlotte (2019). PDF (A000129, A001333, A145901)
  241. S. Heubach, P. Chinn, P. Callahan, Tiling with Trominos (2005)
  242. S. Heubach, P. Z. Chinn, R. P. Grimaldi, Rises, levels, drops and + signs in compositions, Fib. Quart. 41 (3) (2003) 229, PDF
  243. S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, Inversions in Compositions of Integers, doi:10.2989/16073606.2011.594234, Quaestiones Mathematicae 34 (2) (2011) 187-202.
  244. S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math., 308 (2008), 5954-5964.
  245. Heubach, Silvia; Mansour, Toufik, Avoiding patterns of length three in compositions and multiset permutations. Adv. in Appl. Math. 36 (2006), no. 2, 156-174.
  246. Heubach, Silvia; Mansour, Toufik, Combinatorics of Compositions and Words, CRC Press, 2010.
  247. S. Heubach, T. Mansour and A. O. Munagi, Avoiding Permutation Patterns of Type (2,1) in Compositions, Online Journal of Analytic Combinatorics, 4 (2009). See PDF.
  248. Clemens Heuberger, Daniel Krenn, Esthetic Numbers and Lifting Restrictions on the Analysis of Summatory Functions of Regular Sequences, arXiv:1808.00842 [math.CO], 2018. (A000975)
  249. Clemens Heuberger, S Kropf, On the Higher Dimensional Quasi-Power Theorem and a Berry-Esseen Inequality, arXiv preprint arXiv:1602.04055, 2016
  250. Heuberger, Clemens; Prodinger, Helmut, On alpha-greedy expansions of numbers. Adv. in Appl. Math. 38 (2007), no. 4, 505-525.
  251. C. Heuberger, H. Prodinger, S. Wagner, The height of multiple edge plane trees, arXiv preprint arXiv:1503.04749, 2015
  252. T. Hibi, N. Li, H. Ohsugi, The face vector of a half-open hypersimplex, arXiv preprint arXiv:1309.5155, 2013
  253. Takayuki Hibi, Akiyoshi Tsuchiya, Koutarou Yoshida, Gorenstein simplices with a given δ-polynomial, arXiv:1705.05268 [math.CO], 2017.
  254. Dean Hickerson, "Counting Horizontally Convex Polyominoes", J. Integer Sequences, Volume 2, 1999, Article 99.1.8.
  255. Dean Hickerson and Michael Kleber, "Reducing a Set by Subtracting Squares", J. Integer Sequences, Volume 2, 1999, Article 99.1.4.
  256. Angela Hicks, Combinatorics of the Diagonal Harmonics in Recent Trends in Algebraic Combinatorics, part of the Association for Women in Mathematics Series (2019) Vol 16. Springer, Cham, 159-188. doi:10.1007/978-3-030-05141-9_5 (A000272)
  257. Jacob Hicks, M. A. Ollis, John. R. Schmitt, Distinct Partial Sums in Cyclic Groups: Polynomial Method and Constructive Approaches, arXiv:1809.02684 [math.CO], 2018. (A000292)
  258. J. Hietarinta, T. Mase, R. Willox, Algebraic entropy computations for lattice equations: why initial value problems do matter, arXiv:1909.03232 [nlin.SI], 2019. (A006134)
  259. Hikami, Kazuhiro, Volume conjecture and asymptotic expansion of q-series. Experiment. Math. 12 (2003), no. 3, 319-337.
  260. Kazuhiro Hikami. Quantum invariants, modular forms, and lattice points II, J. Math. Phys. 47 (2006) 102301 doi:10.1063/1.2349484
  261. K. Hikami, J. Lovejoy, Torus knots and quantum modular forms, arXiv preprint arXiv:1409.6243, 2014
  262. A. J. Hildebrand, Junxian Li, Xiaomin Li, Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018. (A000201, A003144, A003145, A003146, A003623, A004919, A004976, A158919, A277722, A277723, A277728)
  263. Isak Hilmarsson, Ingibjorg Jonsdottir, Steinunn Sigurdardottir and Sigridur Vidarsdottir, Wilf-classification of mesh patterns of short length, PDF. Also Electronic Journal of Combinatorics 22(4) (2015), #P4.13
  264. Peter Hilton and Jean Pedersen, Catalan numbers, their generalization, and their uses, Math. Intelligencer 13 (1991), no. 2, 64–75.
  265. Hindman, Neil; Jordan, Henry, Measures of sum-free intersecting families. New York J. Math. 13 (2007), 97-106 .
  266. Andreas M. Hinz, The Lichtenberg sequence, Fib. Quart., 55 (2017), to appear.
  267. Hinz, Andreas M.; Klavzar, Sandi; Milutinovic, Uros; Parisse, Daniele; Petr, Ciril, Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence. European J. Combin. 26 (2005), no. 5, 693-708.
  268. Andreas M. Hinz, Sandi Klavžar, Uroš Milutinović, Ciril Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013 ( doi:10.1007/978-3-0348-0237-6. Book's website: http://tohbook.info
  269. Andreas M. Hinz and Daniele Parisse, The Average Eccentricity of Sierpinski Graphs, GRAPHS AND COMBINATORICS, 2011, doi:10.1007/s00373-011-1076-4
  270. Andreas M. Hinz, Paul K. Stockmeyer, Discovering Fibonacci Numbers, Fibonacci Words, and a Fibonacci Fractal in the Tower of Hanoi, The Fibonacci Quarterly (2019) Vol. 57, No. 5, 72-83. PDF (A003849, A247648)
  271. R. Hinze, Concrete stream calculus: An extended study, J. Funct. Progr. 20 (5-6) (2010) 463-535, doi:10.1017/S0956796810000213
  272. M. D. Hirschorn, J. A. Sellers, Enumeration of unigraphical partitions, JIS 11 (2008) 08.4.6
  273. M. D. Hirschhorn, On Recurrences of Fahr and Ringel Arising in Graph Theory, JIS 12 (2009) 09.6.8
  274. M. D. Hirschhorn, J. A. Sellers, A Congruence Modulo 3 for Partitions into Distinct Non-Multiples of Four, Article 14.9.6, Journal of Integer Sequences, Vol. 17 (2014).
  275. P. Hitczenko and S. Janson, Weighted random staircase tableaux, arXiv preprint arXiv:1212.5498, 2012 doi:10.1017/S0963548314000327
  276. P. Hitczenko, S. Janson, Weighted Staircase Tableaux, Asymmetric Exclusion Process, and Eulerian Type Recurrences, 2013; PDF doi:10.1007/978-3-642-54423-1_43
  277. Florent Hivert, High Performance Computing Experiments in Enumerative and Algebraic Combinatorics, PASCO 2017 Proceedings of the International Workshop on Parallel Symbolic Computation, Article No. 2. doi:10.1145/3115936.3115938
  278. Hivert, Florent; Luque, Jean-Gabriel; Novelli, Jean-Christophe; Thibon, Jean-Yves The (1-E)-transform in combinatorial Hopf algebras. J. Algebraic Combin. 33 (2011), no. 2, 277-312.
  279. Florent Hivert and Olivier Mallet, Combinatorics of k-shapes and Genocchi numbers, in FPSAC 2011, Reykjav´k, Iceland DMTCS proc. AO, 2011, 493-504; PDF.
  280. Florent Hivert, Jean-Christophe Novelli, Lenny Tevlin et al., Permutation statistics related to a class of noncommutative symmetric functions and generalizations of the Genocchi numbers (2007), arXiv:0710.0447.
  281. F. Hivert, J.-C. Novelli and J.-Y. Thibon, doi:10.1016/j.crma.2003.09.021 Sur quelques propriétés de l'algèbre des arbres binaires, C. R. Math. Acad. Sci. Paris 337 (2003), no. 9, 565-568.
  282. F. Hivert, J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0401089 The Algebra of Binary Search Trees, Theoretical Computer Science, 339 (2005), 129-165.
  283. F. Hivert, J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0605262 Commutative combinatorial Hopf algebras; Journal of Algebraic Combinatorics, Volume 28, Number 1 / August, 2008.
  284. Florent Hivert, Jean-Christophe Novelli, Jean-Yves Thibon, Trees, functional equations and combinatorial Hopf algebras (2007), arXiv:0701539; European Journal of Combinatorics, Volume 29, Issue 7, October 2008, Pages 1682-1695.
  285. Florent Hivert, Jean-Christophe Novelli, Jean-Yves Thibon, Inversion of some series of free quasi-symmetric functions (2008); arXiv:0809.4480
  286. Florent Hivert, Nefton Pali, Multiple Lie Derivatives and Forests, arXiv:1806.08306 [math.DG], 2018. (A000055, A161680)
  287. Hivert, Florent; Schilling, Anne; Thiéry, Nicolas The biHecke monoid of a finite Coxeter group and its representations. Algebra Number Theory 7 (2013), no. 3, 595-671.
  288. Florent Hivert and Nicolas M. Thi\'ery, Representation theories of some towers of algebras related to the symmetric groups and their Hecke algebras (2006), arXiv:math/0607391.
  289. Florent Hivert and Nicolas M. Thi\'ery, The Hecke group algebra of a Coxeter group and its representation theory (2007), arXiv:0711.1561; Journal of Algebra, Volume 321, Issue 8, 15 April 2009, Pages 2230-2258.
  290. Hivert, Florent; Thiéry, Nicolas M. MuPAD-Combinat, an open-source package for research in algebraic combinatorics. Sém. Lothar. Combin. 51 (2004/05), Art. B51z, 70 pp.
  291. A Hlavác, M Marvan, Nonlocal conservation laws of the constant astigmatism equation, arXiv preprint arXiv:1602.06861, 2016.
  292. Hung Phuc Hoang, Torsten Mütze, Combinatorial generation via permutation languages. II. Lattice congruences, arXiv:1911.12078 [math.CO], 2019. (A001246, A024786, A052528, A123663)
  293. M. F. Hobart and J. D. H. Smith, Vector lattices and rooted trees, Alg. Univ. 34 (1995), 110-117.
  294. Jonathan K. Hodge, Lindsey Brown, Hoang Ha, Single-Peaked Preferences over Multidimensional Binary Alternatives, Discrete Applied Mathematics, Vol. 166 (2014), 14-25; http://scholarworks.gvsu.edu/oapsf_articles/27/, 2014
  295. J. K. Hodge, M. Krines, J. Lahr, Preseparable extensions of multidimensional preferences, Order 26, No. 2, 125-147 (2009) doi:10.1007/s11083-009-9112-1 Table 1 , A215297
  296. Pieter-Jan Hoedt, Parallelizing with MPI in Java to Find the ninth Dedekind Number, preprint, 2015. (A000372)
  297. Hoefel, Andrew H.  ; Mermin, Jeff Gotzmann squarefree ideals. Ill. J. Math. 56, No. 2, 397-414 (2012).
  298. Armin Hoenen, Steffen Eger, Ralf Gehrke, How Many Stemmata with Root Degree k?, Proceedings of the 15th Meeting on the Mathematics of Language, pp. 11-21, 2017.
  299. M. E. Hoffman, arXiv:math.CO/0201253 Combinatorics of rooted trees and Hopf algebras, Trans. AMS 355 (2003), 3795-3811.
  300. Hoffman, Michael E. "Updown categories: Generating functions and universal covers." arXiv preprint arXiv:1207.1705 (2012).
  301. M E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu Journal of Mathematics, Vol. 69 (2015) No. 2 p. 345-366.
  302. Michael E. Hoffman, Sums of Products of Riemann Zeta Tails, arXiv:1602.03399, 2016
  303. T. R. Hoffman and J.P. Solazzo, Complex Two-Graphs via Equiangular Tight Frames (2014); arXiv:math.CO/1408.0334
  304. Tyler Hoffman, B Steinhurst, Hausdorff Dimension of Generalized Fibonacci Word Fractals, arXiv preprint arXiv:1601.04786, 2016
  305. Michael Hoffmann, John Iacono, Patrick K. Nicholson, Rajeev Raman, Encoding nearest larger values, Theoretical Computer Science, 2017. doi:10.1016/j.tcs.2017.02.017
  306. P. Hofman, M. Pipipczuk, A few new facts about the EKG sequence, JIS 11 (2008) 08.4.2
  307. S. Hofmann, G. Schuster, J. Steuding. Euclid, Calkin & Wilf - playing with rationals, Elem. Math. 63 (2008) 109-117 doi:10.4171/EM/95
  308. Douglas R. Hofstadter and Doron Zeilberger, A Conjectured Explicit Determinant Evaluation whose Proof Would Make Us Happy (and the OEIS Richer), preprint, 2015.
  309. Harald Hofstätter, Denominators of coefficients of the Baker-Campbell-Hausdorff series, arXiv:2010.03440 [math.NT], 2020. (A195441)
  310. Emilie Ann Hogan, Experimental Mathematics Applied to the Study of Nonlinear Recurrences, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2011.
  311. T. Hogg, arXiv:quant-ph/9812049 Single-Step Quantum Search Using Problem Structure.
  312. Z. C. Holden, R. M. Richard, J. M. Herbert, Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets, The Journal of Chemical Physics, J. Chem. Phys. 139, 244108 (2013); doi:10.1063/1.4850655
  313. C. A. Holdener, J. A. Holdener, Characterizing Quasi-Friendly Divisors, J. Int. Seq., Vol. 23 (2020), Article 20.8.4. Abstract (A240991)
  314. J. Holdener and E. Rachfal, Perfect and deficient perfect numbers, Amer. Math. Monthly 126 (2019), 541-546.
  315. Sarah H. Holliday and Takao Komatsu, On the Sum of Reciprocal Generalized Fibonacci Numbers, Integers. Volume 11, Issue 4, Pages 441-455, doi:10.1515/INTEG.2011.031.
  316. D. S. Hollman and H. F. Schaefer III, Arbitrary order El'yashevich-Wilson B tensor formulas for the most frequently used internal coordinates in molecular vibrational analyses, The Journal of Chemical Physics, Vol. 137, 164103 (2012); doi:10.1063/1.4759170
  317. M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, 2015; http://www.researchgate.net/profile/Mark_Shattuck/publication/272492907_Commuting_pairs_of_functions_on_a_finite_set/links/54e65a030cf2bff5a4f54375.pdf
  318. Holm, Thorsten; Jørgensen, Peter; Rubey, Martin Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type An. J. Algebraic Combin. 34 (2011), no. 3, 507-523.
  319. Andreas Holmstrom, A first step towards automated conjecture-making in higher arithmetic geometry, Work-in-progress paper presented at the Conference on Intelligent Computer Mathematics, July 2016. Published in the CEUR Workshop Proceedings. http://andreasholmstrom.org/wp-content/2016/05/article-cicm-new-heading-May2016.pdf [... we have been inspired by the now classical work of Zeilberger on holonomic sequences [19], the PhD thesis and articles of Colton [2], [3], [4] on automated conjecture-making in number theory, and of course the Online Encyclopedia of Integer Sequences (OEIS) [16]. ...]
  320. Andreas Holmstrom and Torstein Vik, Zeta Types and Tannakian Symbols as a Method for Representing Mathematical Knowledge, In: Geuvers H., England M., Hasan O., Rabe F., Teschke O. (eds) Intelligent Computer Mathematics. CICM 2017. Lecture Notes in Computer Science, vol 10383. doi:10.1007/978-3-319-62075-6_13 PDF preprint: http://andreasholmstrom.org/wp-content/2017/06/article-zeta-types-tannakian.pdf, ["we argue that a database built out of zeta types and Tannakian symbols could lead to interesting discoveries, similar to what has been achieved for example by the OEIS, the LMFDB, and other existing databases of mathematical objects"]
  321. B. V. Holt, Families of Asymmetric Palintiples Constructed from Symmetric and Shifted-Symmetric Palintiples, arXiv preprint arXiv:1412.0231, 2014
  322. Benjamin V. Holt, Derived Palintiple Families and Their Palinomials, preprint arXiv:1412.0231, 2015. (A008919)
  323. Ralf Holtkamp, On Hopf algebra structures over operads (2004), arXiv:math/0407074.
  324. Holtkamp, Ralf, On Hopf algebra structures over free operads. Adv. Math. 207 (2006), no. 2, 544-565.
  325. P. Holub, M. Miller, H. Perez-Roses, J. Ryan, doi:10.1016/j.dam.2014.07.012 Degree diameter problem on honecomb networks, Disc. Appl. Math. 179 (2014) 139-151
  326. Caroline Holz auf der Heide. Distances and automatic sequences in distinguished variants of Hanoi graphs. Dissertation. Fakultät für Mathematik, Informatik und Statistik. Ludwig-Maximilians-Universität München, 2016.
  327. C. Homberger, Expected Patterns in Permutation Classes, arXiv:1206.0320, 2012
  328. C. Homberger, Counting Fixed-Length Permutation Patterns, arXiv:1211.7117, 2012
  329. Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint arXiv:1410.2657, 2014
  330. C. Homberger, V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv preprint arXiv:1308.4946, 2013
  331. A. N. W. Hone, arXiv:math.NT/0501554 Sigma function solution of the initial value problem for Somos 5 sequences, Trans. Amer. Math. Soc. 359 (2007), no. 10, 5019-5034.
  332. Hone, A. N. W. Elliptic curves and quadratic recurrence sequences. Bull. London Math. Soc. 37 (2005), no. 2, 161-171.
  333. A. N. W. Hone, arXiv:math.NT/0601324 Diophantine non-integrability of a third order recurrence with the Laurent property.
  334. Andrew N. W. Hone, Laurent Polynomials and Superintegrable Maps (2007), arXiv:math/0702280.
  335. A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painleve transcendent (2008); arXiv:0807.2538
  336. A. N. W. Hone, Analytic solutions and integrability for bilinear recurrences of order six, Applic. Anal. 89 (4) (2010)473-492 doi:10.1080/00036810903329977
  337. A. Hone, Curious continued fractions, nonlinear recurrences and transcendental numbers, arXiv:1507.00063, 2015.
  338. A. N. W. Hone, Continued fractions for some transcendental numbers, arXiv preprint arXiv:1509.05019, 2015
  339. A. N. W. Hone, R. Inoue, Discrete Painlev\'e equations from Y-systems, arXiv preprint arXiv:1405.5379, 2014
  340. SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235; doi:10.4134/BKMS.2014.51.1.229.
  341. Siao Hong, Guoyou Qian, On the lcm-analog of binomial coefficient, Asian-European Journal of Mathematics, Volume 07, Issue 04, December 2014; doi:10.1142/S1793557114500569
  342. I. Honkala, T. Laihonen and S. Ranto, On Strongly Identifying Codes, Discrete Math. 254 (2002), no. 1-3, 191-205.
  343. B. Honarvar, R. Paramesran, C.-L. Lim, Image reconstruction from a complete set of geometric and complex moments, Signal Processing, Volume 98, May 2014, Pages 224-232.
  344. S. Hood, D. Recoskie, J. Sawada, D. Wong, doi:10.1007/s10878-013-9630-z Snakes, coils, and single-track circuit codes with spread k. J. Combin. Optim. 30 (1) (2015) 42-62
  345. Lucas Hoogendijk, Prime Generators, Bachelor Thesis, Utrecht University (Netherlands, 2020). PDF (A000945, A000946)
  346. Hoots, Lucas, "Strong quota pair systems and May's theorem on median semilattices." (2015). Univ. Louisville, Electronic Theses and Dissertations. Paper 2253. doi:10.18297/etd/2253
  347. B. Hopkins, Spotted tilings and n-color compositions, INTEGERS 12B (2012/2013), #A6.
  348. Brian Hopkins, Editorial: Anonymity and Youth, The College Mathematics Journal, 45 (Number 2, 2014), 82.
  349. Hopkins, Brian; Jones, Michael A. Shift-induced dynamical systems on partitions and compositions. Electron. J. Combin. 13 (2006), no. 1, Research Paper 80, 19 pp.
  350. Brian Hopkins, Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020. (A001045, A001076, A006130, A006131, A006190, A008287, A013609, A013610, A027907, A028859, A038207, A077939, A086347, A103142, A125145, A141448, A336996)
  351. Brian Hopkins, James A. Sellers, Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020. (A064410, A188674)
  352. BRIAN HOPKINS, ANDREW V. SILLS, THOTSAPORN “AEK” THANATIPANONDA, AND HUA WANG, Parts and subword patterns in compositions, Preprint 2015, http://thotsaporn.com/composition.pdf
  353. Brian Hopkins, Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020. (A003269, A003520, A006054, A034943, A219788)
  354. Sam Hopkins, Thomas McConville, James Propp, Sorting via chip-firing, Electronic Journal of Combinatorics 24(3) (2017), #P3.13
  355. T. Hoppe, A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644.
  356. Jackson Hopper, Paul Pollack, Digitally delicate primes, arXiv:1510.03401 [math.NT], 2015.
  357. A. Hoque, H. Kalita, Generalized perfect numbers connected with arithmetic functions, Math. Sci. Lett. 3, No. 3, 249-253 (2014).
  358. A. F. Horadam, Applications of Modified Pell Numbers to Representations, Ulam Quaterly - Volume 3, Number 1, 1994.
  359. A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/34-1/horadam2.pdf">Jacobsthal Representation Numbers</a>, Fib Quart. 34, 40-54, 1996.
  360. Boris Horvat, Ga\v{s}per Jakli\v{c} and Toma\v{z} Pisanski, On the Number of Hamiltonian Groups (2005), arXiv:math/0503183.
  361. B. Horvat, T. Pisanski; A. Zitnik. Isomorphism checking of I-graphs. Graphs Comb. 28, No. 6, 823-830 (2012) doi:10.1007/s00373-011-1086-2
  362. A. Horzela, P. Blasiak, G.H.E. Duchamp et al., A product formula and combinatorial field theory (2004), arXiv:quant-ph/0409152.
  363. Radim Hosek, Construction and shape optimization of simplical meshes in $ d $-dimensional space, arXiv preprint arXiv:1606.09113, 2016
  364. Haruo Hosoya, What Can Mathematical Chemistry Contribute to the Development of Mathematics?, HYLE--International Journal for Philosophy of Chemistry, Vol. 19, No.1 (2013), pp. 87-105; http://www.hyle.org.
  365. Chetak Hossain, Quotients Derived from Posets in Algebraic and Topological Combinatorics, PhD dissertation, North Carolina State University (2019). PDF (A071356)
  366. S. M. Shabab Hossain, Md. Mahmudur Rahman and M. Sohel Rahman, Solving a Generalized Version of the Exact Cover Problem with a Light-Based Device, Optical Supercomputing, Lecture Notes in Computer Science, 2011, Volume 6748/2011, 23-31, doi:10.1007/978-3-642-22494-2_4.
  367. Philip K. Hotchkiss, Student Inquiry and the Rascal Triangle, arXiv:1907.07749 [math.HO], 2019. (A077028)
  368. Qing-Hu Hou, Toufik Mansour and Simone Severini, Partial transpose of permutation matrices (2007), arXiv:0709.3547.
  369. S. Hougardy, A Scale Invariant Algorithm for Packing Rectangles Perfectly, http://contraintes.inria.fr/BPPC/BPPC12papers/submissions/bppc12_submission_1.pdf, 2012.
  370. Wesley K. Hough, On Independence, Matching, and Homomorphism Complexes, (2017), Theses and Dissertations--Mathematics, 42. doi:10.13023/ETD.2017.119
  371. Robin Houston, Tackling the Minimal Superpermutation Problem, arXiv preprint arXiv:1408.5108, 2014
  372. Benjamin Howard, John Millson, Andrew Snowden and Ravi Vakil, The moduli space of n points on the line is cut out by simple quadrics when n is not six (2006), arXiv:math/0607372 and Duke Math. J. 146 2 (2009) 175-226 doi:10.1215/00127094-2008-063
  373. F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, http://www.math-cs.ucmo.edu/~curtisc/articles/howardcooper/genfib4.pdf.
  374. Peter Hoyer, Troy Lee and Robert Spalek, Negative weights make adversaries stronger (2006), arXiv:quant-ph/0611054.
  375. C. Hoymann, J. Ellenbeck, R. Pabst, M. Schinnenburg, doi:10.1109/ICC.2007.931 Evaluation of Grouping Strategies for an Hierarchical SDMA/TDMA Scheduling Process, ICC'07, pp. 5616-5621
  376. J. Hsiang, D. F. Hsu and Y. P. Shieh, On the hardness of counting problems of complete mappings, Discrete Math., 277 (2004), 87-100.
  377. Xiaonan Hu, CR Johnson, CE Davis, Y Zhang, Ranks of permutative matrices, Special Matrices, Volume 4, Issue 1 (Jun 2016), DOI: https://doi.org/10.1515/spma-2016-0022.
  378. Yangzhou Hu, "On the Number of Fixed-Length Semiorders", Journal of Integer Sequences, Vol. 17 (2014), #14.1.6.
  379. Richard Hua, Michael J. Dinneen, Improved QUBO Formulation of the Graph Isomorphism Problem, SN Computer Science (2020) Vol. 1, No. 19. doi:10.1007/s42979-019-0020-1 (A000088)
  380. Chengxing Huang, Shou-li Peng. A note on fracts of one forbidden word and their box dimensions, Fractals 14 (4) (2006) 327-337 doi:10.1142/S0218348X06003325
  381. Cheng-Xing Huang, Shou-Li Peng, Fractals of forbidden words and approximating their box dimensions, Physica A: Statistical Mechanics and its Applications, Volume 387, Issues 2-3, 15 January 2008, Pages 703-716.
  382. Chien-Hung Huang, Jeffrey J. P. Tsai, Nilubon Kurubanjerdjit, Computational analysis of molecular networks using spectral graph theory, complexity measures and information theory, (2019) doi:10.1101/536318
  383. Chien-Hung Huang, Efendi Zaenudin, Jeffrey J.P. Tsai, Nilubon Kurubanjerdjit, Eskezeia Y. Dessie, Ka-Lok Ng, Dissecting molecular network structures using a network subgraph approach, PeerJ (2020) 8:e9556, PubMed 33005483. doi:10.7717/peerj.9556
  384. Jia Huang, Hecke algebras with independent parameters, arXiv preprint arXiv:1405.1636, 2014.
  385. Jia Huang, Hecke algebras of simply-laced type with independent parameters, arXiv:1902.11139 [math.RT], 2019. (A022096, A022394)
  386. Jia Huang, Nonassociativity of the Norton Algebras of some distance regular graphs, arXiv:2001.05547 [math.CO], 2020. (A000975)
  387. Jia Huang, <a href="https://arxiv.org/abs/1812.11010">Compositions with restricted parts</a>, arXiv:1812.11010 [math.CO], 2018. Also Discrete Masth., 343 (2020), # 111875.
  388. Jia Huang, Madison Mickey, Jianbai Xu, The Nonassociativity of the Double Minus Operation, arXiv:1710.05651 [math.CO], 2017. (A000975, A000217, A048702, A155051, A265158)
  389. J. Huang, A. Senger, P. Wear, T. Wu, Partition statistics equidistributed with the number of hook difference one cells, http://www.math.umn.edu/~reiner/REU/HuangSengerWearWu2013.pdf, 2013.
  390. P.-Y. Huang, S.-C. Liu, Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
  391. Rijun Huang, Fei Teng, Bo Feng, Permutation in the CHY-Formulation, arXiv:1801.08965 [hep-th], 2018. (A033282)
  392. WenQi Huang and Liang Yu, A Quasi Physical Method for the Equal Sphere Packing Problem, in 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications; doi:10.1109/TrustCom.2011.233
  393. WenQi Huang and Liang Yu, Serial Symmetrical Relocation Algorithm for the Equal Sphere Packing Problem, arXiv:1202.4149, 2012
  394. Y.-C. Huang, K. R. Narayanan, Construction pi_A and pi_D Lattices: Construction, Goodness, and Decoding Algorithms, arXiv preprint arXiv:1506.08269, 2015
  395. Shi Huang, Modeling the creative process of the mind by prime numbers and a simple proof of the Riemann Hypothesis (2008); arXiv:0810.0095
  396. Štěpán Hubálovský and Eva Trojovská, On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function, Mathematics (2020) Vol. 8, 1796. doi:10.3390/math8101796 (A000010)
  397. M. Huber and G. Karaali, Math: That Thing You Do, Journal of Humanistic Mathematics, Vol. 3 (No. 1, 2013), pp. 1-2.
  398. Christian Huck, A Note on Affinely Regular Polygons (2008); arXiv:0801.3218; European Journal of Combinatorics, Volume 30, Issue 2, February 2009, Pages 387-395.
  399. Christian Huck, On the existence of U-polygons of class c4 in planar point sets, Discrete Mathematics 30 (2) (2009) 387 doi:10.1016/j.ejc.2008.05.001
  400. R. L. Hudson, Y. Pei, On a quantum causal stochastic double product integral related to Levy area, arXiv preprint arXiv:1506.04294, 2015
  401. Ed Hughes and Rob Pratt, New Features in SAS/OR 13.1, SAS Paper SAS256-2014
  402. Justin Hughes, Representations Arising from an Action on D-neighborhoods of Cayley Graphs, 2013; slides from a talk, PDF
  403. JiSun Huh and SeungKyung Park, Generalized Small Schröder Numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.15.
  404. Klaus Hulek, Fabian Müller, Moritz Schubotz, Olaf Teschke, Mathematical Research Data–An Analysis Through zbMATH References, EMS Newsletter (2019) Vol. 9, Issue 133, 54-57. doi:10.4171/NEWS/113/14 The On-Line Encyclopedia of Integer Sequences (OEIS) is a browsable and searchable online resource launched in 1996 that grew out of N.J.A. Sloane's 1973 book A Handbook of Integer Sequences. Starting in 1994, there are 2,752 references to it in zbMATH. Of these, more than 70% cite OEIS as a whole, while the remaining refer to one or, in about 5% of the cases, several actual entries of the database (with a single reference citing as many as 14 sequences in one case). However, in contrast to the previous example, the references to the online service have quickly substituted those to the printed handbook. The easy usability of the OEIS and its powerful search features (which benefit from the rather simple data shape of integer sequences) appear to be a crucial factor here, making it a model for highly findable, accessible, and reusable mathematical data. Nevertheless, interoperability remains an issue even for this resource. Currently one can only dream of seamlessly cross-linking the generating functions in the OEIS with respective entries in the DLMF – a service which would open a whole new dimension of opportunities.
  405. Klaus Hulek, Olaf Teschke, The Transition of zbMATH Towards an Open Information Platform for Mathematics, EMS Newsletter (June 2020) Issue 116, 44-47. doi:10.4171/NEWS/116/12 Classical publications are being supplemented by an increasing amount of research data, which, however, are still available in mostly isolated form and have hardly been indexed. Nevertheless, they are produced and used by many mathematicians. Examples are the number sequences in the On-Line Encyclopedia of Integer Sequences, functions in the NIST Digital Library of Mathematical Functions, Calabi–Yau data or the L-Functions and Modular Forms Database.
  406. Thomas C. Hull, Coloring Connections with Counting Mountain-Valley Assignments in (book) - Origami^6: I. Mathematics, 2015, ed. Koryo Miura, Toshikazu Kawasaki, Tomohiro Tachi, Ryuhei Uehara, Robert J. Lang, Patsy Wang-Iverson, American Mathematical Soc., Dec 18, 2015 - Origami - 368 pages
  407. Thomas C. Hull, Tomohiro Tachi, Double-line rigid origami, arXiv:1709.03210 [math.MG], 2017.
  408. Axel Hultman and Kathrin Vorwerk, Pattern avoidance and the Bruhat order on involutions (2007), arXiv:0711.2223.
  409. Brandon Humpert and Jeremy L. Martin, The Incidence Hopf Algebra of Graphs, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp. 517-526.
  410. S. P. Humphries, "Cogrowth groups and the Dedekind-Frobenius group determinant", Mathematical Proceedings of the Cambridge Philosophical Society, volume 121, Part 2, pages 193-217 (1997).
  411. Stephen P. Humphries, Zane Kun Li, Counting powers of words in monoids, European Journal of Combinatorics, Volume 30, Issue 5, July 2009, Pages 1297-1308.
  412. Norbert Hungerbühler, Ernst Specker, A generalization of the Smarandache Function to several variables, INTEGERS 6 (2006) #A23.
  413. Svenja Huntemann, Neil A. McKay, Counting Domineering Positions, arXiv:1909.12419 [math.CO], 2019. (A000045, A000931, A007598, A028420, A030186, A033506, A054894, A286945, A287595, A288028)
  414. Steve Huntsman, Generalizing cyclomatic complexity via path homology, arXiv:2003.00944 [cs.SE], 2020. (A003286)
  415. Mari Huova, Combinatorics on Words. New Aspects on Avoidability, Defect Effect, Equations and Palindromes, Turku Centre for Computer Science, TUCS Dissertations No 172, April 2014; http://www.doria.fi/bitstream/handle/10024/95677/TUCSDissertation172.pdf?sequence=4
  416. Mari Huova and Juhani Karhumäki, "On Unavoidability of k-abelian Squares in Pure Morphic Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.9.
  417. Vera M. Hur, MA Johnson, JL Martin, Oscillation estimates of eigenfunctions via the combinatorics of noncrossing partitions, arXiv preprint arXiv:1609.02189, 2016.
  418. Spencer P. Hurd, Judson S. McCranie, Integers That Are Sums of Uniform Powers of All Their Prime Factors: The Sequence A068916, J. Int. Seq., Vol. 22 (2019), Article 19.3.4. HTML (A067688, A068916, A268036, A268594, A318606)
  419. Werner Hurlimann, Benford's law from 1881 to 2006 (2006), arXiv:math.ST/0607168.
  420. W. Hürlimann, A First Digit Theorem for Square-Free Integer Powers, Pure Mathematical Sciences, Vol. 3, 2014, no. 3, 129 - 139 doi:10.12988/pms.2014.4615.
  421. W. Hürlimann, A First Digit Theorem for Powers of perfect powers, Communications in Mathematics and Applications Vol. 5, No. 3, pp. 91–99, 2014; http://www.researchgate.net/profile/Werner_Huerlimann/publication/271834077_A_first_digit_theorem_for_powers_of_perfect_powers/links/54d33c8f0cf2b0c6146d299c.pdf
  422. W. Hürlimann, Exact and Asymptotic Evaluation of the Number of Distinct Primitive Cuboids, Journal of Integer Sequences, 18 (2015), #15.2.5
  423. Werner Hurlimann, A first digit theorem for powerful integer powers, Springer Link, Oct 06 2015; doi:10.1186/s40064-015-1370-3.
  424. W Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88; http://scientificadvances.co.in; DOI: http://dx.doi.org/10.18642/jantaa_7100121599
  425. Werner Hürlimann, Permutation invariant properties of primitive cubic quadruples, The Ramanujan Journal, 2016; doi:10.1007/s11139-016-9798-9
  426. W Hürlimann, Two Pentagonal Number Primality Tests and Twin Prime Counting in Arithmetic Progressions of Modulus 24, Pure Mathematical Sciences, Vol. 5, 2016, no. 1, 49 - 58 http://dx.doi.org/10.12988/pms.2016.648
  427. W. Hurt and A. Osorio, A Sequential Allocation Problem: The Asymptotic Distribution of Resources, Munich Personal RePEc Archive, 2014; http://mpra.ub.uni-muenchen.de/56690/1/MPRA_paper_56690.pdf
  428. F. Hurtado, M. Noy, Ears of triangulations and Catalan numbers, Discrete Mathematics, Volume 149, Issues 1-3, 22 February 1996, Pages 319-324.
  429. Saud Hussein, An Identity for the Partition Function Involving Parts of k Different Magnitudes, arXiv:1806.05416 [math.NT], 2018. (A000712)
  430. Cristiano Husu, The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2, arXiv:1804.09883 [math.NT], 2018. (A000009, A002865, A053445, A087897)
  431. J. Huttenhain, C. Ikenmeyer, Binary Determinantal Complexity, arXiv preprint arXiv:1410.8202, 2014
  432. M. N. Huxley, N. Watt, Mertens Sums requiring Fewer Values of the Möbius function, arXiv:1807.05890 [math.NT], 2018.
  433. D. Huylebrouck, Generalizing Wallis' formula, American Mathematical Monthly, to appear, 2015; PDF
  434. D. Huylebrouck, The Meta-Golden Ratio Chi, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, http://archive.bridgesmathart.org/2014/bridges2014-151.pdf
  435. Dirk Huylebrouck, A Second Rod, Africa and Mathematics (2019). Mathematics, Culture, and the Arts. Springer, Cham. 177-188. doi:10.1007/978-3-030-04037-6_11 (A100000, A200066)
  436. Hsien-Kuei Hwang, Hua-Huai Chern, Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018. (A008292, A123125, A173018, A244312, many others)
  437. Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence ...: theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf see also doi:10.1145/3127585 (A000217, A000292, A000578, A000788, A001105, A001844, A001855, A002378, A003314, A003661, A004523, A004524, A005187, A005536, A005563, A005942, A006165, A007378, A032766, A033156, A035263, A037123, A046092, A047229, A047335, A053646, A054248, A059015, A060973, A061168, A065359, A066997, A067699, A077071, A078881, A079000, A079253, A079905, A079945, A080596, A080637, A080639, A080645, A080653, A080702, A080776, A083652, A087733, A088720, A088721, A094345, A097383, A097384, A110316, A115836, A122247, A123753, A159615, A161680, A166079, A173318, A181132 , A213508, A213509, A214214, A220001, A231664, A231668, A231672, A231676, A231680, A231684, 268289, A275202, A295556)
  438. Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019. Also PDF (A000182, A002439, A022493, A035378, A079144, A138265, A158690, A158691, A179525, A196194, A207214, A207386, A207397, A207433, A207434, A207556, A207557, A207569, A207570, A207571, A207651, A207652, A207653, A207654, A209832, A214687, A215066, A224885, A289312, A289313, A289316, A289317) In particular, the useful database OEIS played a key role in linking the various structures in different areas some of which will be briefly described later
  439. Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.AofA.2018.29 (A000108, A000139, A000168, A000256, A000257, A000260, A000287, A000309, A001764, A002293, A005159, A006013, A022558, A062062, A069728, A151374, A153231, A298358)
  440. H.-K. Hwang, A. Panholzer, N. Rolin, et al., Probabilistic analysis of the (1 + 1)-evolutionary algorithm, 2014; arXiv:1409.4955
  441. M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv:1208.1052, 2012
  442. Matthew Hyatt and Marina Skyers, On the Increases of the Sequence ⌊k√n⌋, Electronic Journal of Combinatorial Number Theory, Volume 15 #A17, 2015. (A060018, A000196)
  443. Trevor Hyde, Liminal reciprocity and factorization statistics, arXiv:1803.08438 [math.NT], 2018. (A088996)
  444. Pierre Hyvernat, https://hal.archives-ouvertes.fr/hal-00601505v6 Some Properties of Inclusions of Multisets and Contractive Boolean Operators], 2014.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.