login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042978 Stern primes: primes not of the form p + 2b^2 for p prime and b > 0. 5
2, 3, 17, 137, 227, 977, 1187, 1493 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

No others < 1299709. Are there any others? Related to a conjecture of Goldbach.

The next element of the sequence, if it exists, is larger than 10^9 ; see A060003. - M. F. Hasler, Nov 16 2007

The next element, if it exists, is larger than 2*10^13. - Benjamin Chaffin, Mar 28 2008

Does not equal A000040(k) + A001105(j) for all k & j >0. - Robert G. Wilson v, Sep 07 2012

REFERENCES

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 137, p. 46, Ellipses, Paris 2008.

L. E. Dickson, History of the theory of Numbers, vol. 1, page 424.

LINKS

Table of n, a(n) for n=1..8.

L. Hodges, A lesser-known Goldbach conjecture, Math. Mag., 66 (1993), 45-47.

Mark VandeWettering, Toying with a lesser known Goldbach Conjecture

Index entries for sequences related to Goldbach conjecture

MATHEMATICA

fQ[n_] := Block[{k = Floor[ Sqrt[ n/2]]}, While[k > 0 && !PrimeQ[n - 2*k^2], k--]; k == 0]; Select[ Prime[Range[238]], fQ] (* Robert G. Wilson v, Sep 07 2012 *)

PROG

(PARI) forprime( n=1, default(primelimit), for(s=1, sqrtint(n\2), if(isprime(n-2*s^2), next(2))); print(n)) - M. F. Hasler, Nov 16 2007

(PARI) forprime(p=2, 4e9, forstep(k=sqrt(p\2), 1, -1, if(isprime(p-2*k^2), next(2))); print1(p", ")) \\ Charles R Greathouse IV, Aug 04 2011

CROSSREFS

Subsequence of A060003.

Sequence in context: A056794 A135726 A164816 * A089675 A041383 A042903

Adjacent sequences:  A042975 A042976 A042977 * A042979 A042980 A042981

KEYWORD

nonn,more

AUTHOR

Jud McCranie

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 23 11:56 EDT 2014. Contains 240919 sequences.