login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060973 a(2*n+1) = a(n+1)+a(n), a(2*n) = 2*a(n), with a(1)=0 and a(2)=1. 4
0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000

R. Stephan, Some divide-and-conquer sequences ...

R. Stephan, Table of generating functions

FORMULA

a(n) = n-A006165(n) = A006165(n)-A053646(n) = (n-A053646(n))/2 [for n>1 ]. If n = 2*2^m+k with 0< = k< = 2^m, then a(n) = 2^m; if n = 3*2^m+k with 0< = k< = 2^m, then a(n) = 2^m+k.

G.f. -x/(1-x) + x/(1-x)^2 * (1 + sum(k>=0, t^2(t-1), t=x^2^k)). - Ralf Stephan, Sep 12 2003

EXAMPLE

a(6)=2*a(3)=2*1=2. a(7)=a(3)+a(4)=1+2=3.

MAPLE

A060973 := proc(n)

    option remember;

    if n <= 2 then

        return n-1;

    fi;

    if n mod 2 = 0 then

        2*procname(n/2)

    else

        procname((n-1)/2)+procname((n+1)/2);

    fi;

end proc:

CROSSREFS

Sequence in context: A228482 A091822 A173022 * A097915 A255072 A029131

Adjacent sequences:  A060970 A060971 A060972 * A060974 A060975 A060976

KEYWORD

nonn

AUTHOR

Henry Bottomley, May 09 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 12:53 EST 2016. Contains 278738 sequences.