login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151920
a(n) = (Sum_{i=1..n+1} 3^wt(i))/3, where wt() = A000120().
15
1, 2, 5, 6, 9, 12, 21, 22, 25, 28, 37, 40, 49, 58, 85, 86, 89, 92, 101, 104, 113, 122, 149, 152, 161, 170, 197, 206, 233, 260, 341, 342, 345, 348, 357, 360, 369, 378, 405, 408, 417, 426, 453, 462, 489, 516, 597, 600, 609, 618, 645, 654, 681, 708, 789, 798, 825, 852, 933, 960
OFFSET
0,2
COMMENTS
Partial sums of A147610 (but with offset changed to 0).
It appears that the first bisection gives the positive terms of A147562. - Omar E. Pol, Mar 07 2015
FORMULA
a(n) = (A147562(n+2) - 1)/4 = (A151917(n+2) - 1)/2. - Omar E. Pol, Mar 13 2011
a(n) = (A130665(n+1) - 1)/3. - Omar E. Pol, Mar 07 2015
a(n) = a(n-1) + 3^A000120(n+1)/3. - David A. Corneth, Mar 21 2015
EXAMPLE
n=3: (3^1+3^1+3^2+3^1)/3 = 18/3 = 6.
n=18: the binary expansion of 18+1 is 10011, i.e., 19 = 2^4 + 2^1 + 2^0.
The exponents of these powers of 2 (4, 1 and 0) reoccur as exponents in the powers of 4: a(19) = 3^0 * [(4^4 - 1) / 3 + 1] + 3^1 * [(4^1 - 1) / 3 + 1] + 3^2 * [(4^0 - 1)/3 + 1] = 1 * 86 + 3 * 2 + 9 * 1 = 101. - David A. Corneth, Mar 21 2015
MATHEMATICA
t = Nest[Join[#, # + 1] &, {0}, 14]; Table[Sum[3^t[[i + 1]], {i, 1, n}]/3, {n, 60}] (* Michael De Vlieger, Mar 21 2015 *)
PROG
(PARI) a(n) = sum(i=1, n+1, 3^hammingweight(i))/3; \\ Michel Marcus, Mar 07 2015
(PARI) a(n)={b=binary(n+1); t=#b; e=-1; sum(i=1, #b, e+=(b[i]==1); (b[i]==1)*3^e*((4^(#b-i)-1)/3+1))} \\ David A. Corneth, Mar 21 2015
KEYWORD
nonn,easy,look
AUTHOR
N. J. A. Sloane, Aug 05 2009, Aug 06 2009
STATUS
approved