login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151920 a(n) = (Sum_{i=1..n+1} 3^wt(i))/3, where wt() = A000120(). 14
1, 2, 5, 6, 9, 12, 21, 22, 25, 28, 37, 40, 49, 58, 85, 86, 89, 92, 101, 104, 113, 122, 149, 152, 161, 170, 197, 206, 233, 260, 341, 342, 345, 348, 357, 360, 369, 378, 405, 408, 417, 426, 453, 462, 489, 516, 597, 600, 609, 618, 645, 654, 681, 708, 789, 798, 825, 852, 933, 960 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Partial sums of A147610 (but with offset changed to 0).

It appears that the first bisection gives the positive terms of A147562. - Omar E. Pol, Mar 07 2015

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

Index entries for sequences related to cellular automata

FORMULA

a(n) = (A147562(n+2) - 1)/4 = (A151917(n+2) - 1)/2. - Omar E. Pol, Mar 13 2011

a(n) = (A130665(n+1) - 1)/3. - Omar E. Pol, Mar 07 2015

a(n) = a(n-1) + 3^A000120(n+1))/3. - David A. Corneth, Mar 21 2015

EXAMPLE

n=3: (3^1+3^1+3^2+3^1)/3 = 18/3 = 6.

n=18: the binary expansion of 18+1 is 10011, i.e., 19 = 2^4 + 2^1 + 2^0.

The exponents of these powers of 2 (4, 1 and 0) reoccur as exponents in the powers of 4: a(19) = 3^0 * [(4^4 - 1) / 3 + 1] + 3^1 * [(4^1 - 1) / 3 + 1] + 3^2 * [(4^0 - 1)/3 + 1] = 1 * 86 + 3 * 2 + 9 * 1 = 101. - David A. Corneth, Mar 21 2015

MATHEMATICA

t = Nest[Join[#, # + 1] &, {0}, 14]; Table[Sum[3^t[[i + 1]], {i, 1, n}]/3, {n, 60}] (* Michael De Vlieger, Mar 21 2015 *)

PROG

(PARI) a(n) = sum(i=1, n+1, 3^hammingweight(i))/3; \\ Michel Marcus, Mar 07 2015

(PARI) a(n)={b=binary(n+1); t=#b; e=-1; sum(i=1, #b, e+=(b[i]==1); (b[i]==1)*3^e*((4^(#b-i)-1)/3+1))} \\ David A. Corneth, Mar 21 2015

CROSSREFS

Cf. A130665, A147562, A147610, A153000, A160410, A160414. - Omar E. Pol, Nov 12 2009

Cf. A139250, A151917, A152998. - Omar E. Pol, Mar 13 2011

Sequence in context: A022486 A267700 A161910 * A160714 A256644 A219764

Adjacent sequences:  A151917 A151918 A151919 * A151921 A151922 A151923

KEYWORD

nonn,easy,look

AUTHOR

N. J. A. Sloane, Aug 05 2009, Aug 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:53 EST 2016. Contains 279001 sequences.