login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4). 18
0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The structure has a fractal behavior similar to the toothpick sequence A139250.

First differences: A161415, where there is an explicit formula for the n-th term.

For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.

LINKS

Table of n, a(n) for n=0..46.

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191

Omar E. Pol, Illustration of initial terms

Omar E. Pol, Illustration of the structure after 24th stage (contains 1729 ON cells)

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

Index entries for sequences related to cellular automata

FORMULA

a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012

a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013

EXAMPLE

From Omar E. Pol, Sep 24 2015: (Start)

With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:

1;

9;

21,    49;

61,    97,  133,  225;

237,  273,  309,  417,  453, 561,  669,  961;

...

Right border gives A060867.

This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.

.

Illustration of initial terms, for n = 1..10:

.       _ _ _ _                       _ _ _ _

.      |  _ _  |                     |  _ _  |

.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _|_|_  | |

.      | |_|  _ _     _ _   _ _     _ _  |_| |

.      |_ _| |  _|_ _|_  | |  _|_ _|_  | |_ _|

.          | |_|  _ _  |_| |_|  _ _  |_| |

.          |   | |  _|_|_ _ _|_|_  | |   |

.          |  _| |_|  _ _   _ _  |_| |_  |

.          | | |_ _| |  _|_|_  | |_ _| | |

.          | |_ _| | |_|  _  |_| | |_ _| |

.          |  _ _  |  _| |_| |_  |  _ _  |

.          | |  _|_| | |_ _ _| | |_|_  | |

.          | |_|  _| |_ _| |_ _| |_  |_| |

.          |   | | |_ _ _ _ _ _ _| | |   |

.          |  _| |_ _| |_   _| |_ _| |_  |

.       _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _

.      |  _| |_ _|   |_ _| |_ _|   |_ _| |_  |

.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |

.      | |_ _| |                     | |_ _| |

.      |_ _ _ _|                     |_ _ _ _|

.

After 10 generations there are 273 ON cells, so a(10) = 273.

(End)

MAPLE

read("transforms") ; isA000079 := proc(n) if type(n, 'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:

A048883 := proc(n) 3^wt(n) ; end proc:

A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:

A160414 := proc(n) add( A161415(k), k=1..n) ; end proc: seq(A160414(n), n=0..90) ; # R. J. Mathar, Oct 16 2010

PROG

(PARI) my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<<valuation(n, 2)), n\2)); vector(99, i, 4*(s+=t(i))+1) \\ Altug Alkan, Sep 25 2015

CROSSREFS

Cf. A001235, A011541, A011782, A000225, A060867, A139250, A147562, A160117, A160118, A160410, A160412, A161415, A160720, A160727, A151725, A256530, A256534.

Sequence in context: A259243 A241747 A133762 * A256530 A118130 A144482

Adjacent sequences:  A160411 A160412 A160413 * A160415 A160416 A160417

KEYWORD

nonn,tabf

AUTHOR

Omar E. Pol, May 20 2009

EXTENSIONS

Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009

More terms from R. J. Mathar, Oct 16 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 16:15 EDT 2018. Contains 316529 sequences. (Running on oeis4.)