This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002267 The 15 supersingular primes: primes dividing order of Monster simple group. 9
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (list; graph; refs; listen; history; text; internal format)



The supersingular primes are a subset of the Chen primes (A109611). - Paul Muljadi, Oct 12 2005

PROD(a(k): 1<=k<=15) = 1618964990108856390 = A174848(26). - Reinhard Zumkeller, Apr 02 2010


J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985.

A. P. Ogg, Modular functions, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 521-532, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.

Thompson, J. G. "Finite groups and modular functions." Bulletin of the London Mathematical Society 11.3 (1979): 347-351. See page 350.


Table of n, a(n) for n=1..15.

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

T. Gannon, Postcards from the edge, or Snapshots of the theory of generalised Moonshine, arXiv:math/0109067 [math.QA], 2001.

Eric Weisstein's World of Mathematics, Supersingular Prime

Index entries for sequences related to groups


FactorInteger[GroupOrder[MonsterGroupM[]]][[All, 1]] (* Jean-Fran├žois Alcover, Oct 03 2016 *)


Cf. A003131, A001379, A051161, A109611.

Sequence in context: A171032 A171045 A222566 * A178762 A051750 A268109

Adjacent sequences:  A002264 A002265 A002266 * A002268 A002269 A002270




N. J. A. Sloane



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 23:55 EST 2016. Contains 278902 sequences.