This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002265 Integers repeated 4 times. 84
 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS For n>=1 and i=sqrt(-1) let F(n) the n X n matrix of the Discrete Fourier Transform (DFT) whose element (j,k) equals exp(-2*Pi*i*(j-1)*(k-1)/n)/sqrt(n). The multiplicities of the four eigenvalues 1, i, -1, -i of F(n) are a(n+4), a(n-1), a(n+2), a(n+1), hence a(n+4) + a(n-1) + a(n+2) + a(n+1) = n for n>=1. E.g., the multiplicities of the eigenvalues 1, i, -1, -i of the DFT-matrix F(4) are a(8)=2, a(3)=0, a(6)=1, a(5)=1, summing up to 4. - Franz Vrabec, Jan 21 2005 After initial terms, same as floor(n/2) - floor(n/4). - Jonathan Vos Post, Jan 19 2007 Complement of A010873, since A010873(n)+4*a(n)=n. - Hieronymus Fischer, Jun 01 2007 For even values of n, a(n) gives the number of partitions of n into exactly two parts with both parts even. - Wesley Ivan Hurt, Feb 06 2013 a(n-4) counts number of partitions of (n) into parts 1 and 4. For example a(11) = 3 with partitions (44111), (41111111), (11111111111). - David Neil McGrath, Dec 04 2014 a(n-4) counts walks (closed) on the graph G(1-vertex; 1-loop, 4-loop) where order of loops is unimportant. - David Neil McGrath, Dec 04 2014 REFERENCES V. Cizek, Discrete Fourier Transforms and their Applications, Adam Hilger, Bristol 1986, p. 61. LINKS Todd Silvestri, Table of n, a(n) for n = 0..999 J. H. McClellan, T. W. Parks, Eigenvalue and Eigenvector Decomposition of the Discrete Fourier Transform, IEEE Trans. Audio and Electroacoust., Vol. AU-20, No. 1, March 1972, pp. 66-74. Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA a(n) = floor(n/4), n>=0; a(n) = ( Sum_{k=0..n} (k+1)*cos(Pi*(n-k)/2}+1/4*(cos(n*Pi/2)+1+(-1)^n) )/2 - 1. - Paolo P. Lava, Oct 09 2006 G.f.: (x^4)/((1-x)*(1-x^4)). a(n) = (2*n-(3-(-1)^n-2*(-1)^floor(n/2)))/8; also a(n) = (2*n-(3-(-1)^n-2*sin(Pi/4*(2*n+1+(-1)^n))))/8 = (n-A010873(n))/4. - Hieronymus Fischer, May 29 2007 a(n) = -1 + Sum_{k=0..n} ( (1/24)*( -5*(k mod 4) + ((k+1) mod 4) + ((k+2) mod 4) + 7*((k+3) mod 4)) ). - Paolo P. Lava, Jun 20 2007 a(n) = (1/4)*(n-(3-(-1)^n-2*(-1)^((2*n-1+(-1)^n)/4))/2). - Hieronymus Fischer, Jul 04 2007 a(n) = floor((n^4-1)/4*n^3) (n>=1); a(n) = floor((n^4-n^3)/(4*n^3-3*n^2)) (n>=1). - Mohammad K. Azarian, Nov 08 2007 For n>=4, a(n) = floor( log_4( 4^a(n-1) + 4^a(n-2) + 4^a(n-3) + 4^a(n-4) ) ). - Vladimir Shevelev, Jun 22 2010 a(n) = A180969(2,n). - Adriano Caroli, Nov 26 2010 a(n) = A173562(n)-A000290(n); a(n+2) = A035608(n)-A173562(n). - Reinhard Zumkeller, Feb 21 2010 a(n+1) = A140201(n) - A057353(n+1). - Reinhard Zumkeller, Feb 26 2011 a(n) = ceiling((n-3)/4), n >= 0. - Wesley Ivan Hurt, Jun 01 2013 a(n) = (2*n + (-1)^n + 2*sin(Pi*n/2) + 2*cos(Pi*n/2) - 3)/8. - Todd Silvestri, Oct 27 2014 E.g.f.: (x/4 - 3/8)*exp(x) + exp(-x)/8 + (sin(x)+cos(x))/4. - Robert Israel, Oct 30 2014 a(n) = a(n-1) + a(n-4) - a(n-5) with initial values a(3)=0, a(4)=1, a(5)=1, a(6)=1, a(7)=1. - David Neil McGrath, Dec 04 2014 a(n) = A004526(A004526(n)). - Bruno Berselli, Jul 01 2016 MAPLE seq(seq(seq(k, i=2..3), j=2..3), k=0..19); # Zerinvary Lajos, Apr 29 2007 P:=proc(n) local a, i, k; for i from 0 by 1 to n do a:=-1+sum('1/24*(-5*(k mod 4)+((k+1) mod 4)+((k+2) mod 4)+7*((k+3) mod 4))', 'k'=0..i); print(a); od; end: P(100); # Paolo P. Lava, Jun 20 2007 A002265:=n->floor(n/4); seq(A002265(n), n=0..100); # Wesley Ivan Hurt, Dec 10 2013 MATHEMATICA Table[Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 10 2013 *) a[n_Integer/; n>=0]:=Quotient[2 n+(-1)^n+2 Mod[n^2 (3 n+2), 4, -1]+2 Mod[(n+1)^3, 4, -1]-3, 8] (* Todd Silvestri, Oct 27 2014 *) PROG (Sage) [floor(n/4) for n in xrange(0, 84)] # Zerinvary Lajos, Dec 02 2009 (PARI) a(n)=n\4 \\ Charles R Greathouse IV, Dec 10 2013 (MAGMA) [Floor(n/4): n in [0..80]]; // Vincenzo Librandi, Oct 28 2014 CROSSREFS Cf. A008615, A008621, A249356. Zero followed by partial sums of A011765. Partial sums: A130519. Other related sequences: A004526, A010872, A010873, A010874. Third row of A180969. a(n)+1 gives row 1 of the array in A238340.? Sequence in context: A197637 A235492 A226762 * A242601 A110655 A008621 Adjacent sequences:  A002262 A002263 A002264 * A002266 A002267 A002268 KEYWORD nonn,easy AUTHOR EXTENSIONS Clarified my formulas Mohammad K. Azarian, Aug 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.