OFFSET
1,1
COMMENTS
There are 2*Fibonacci(floor((n-2)/2)) terms with n digits (this is A214927 or essentially twice A103609). - N. J. A. Sloane, Mar 20 2013
All terms are made of "symmetric" concatenations of 1089 and/or 2178, with an arbitrary numbers of 9's inserted in the middle of these and 0's inserted between them. See A031877 for the reversals and further information: union of the two, sequences "made of" 1089 or 2178 only. - M. F. Hasler, Jun 23 2019
Also: 99 times A061852: numbers that are palindromic, have only digits in {0, 1} or in {0, 2}, and no isolated ("single") digit. - M. F. Hasler, Oct 17 2022
REFERENCES
W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
Gardiner, Anthony, and A. D. Gardiner. Discovering mathematics: The art of investigation. Oxford University Press, 1987.
G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician").
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 400 terms from Vincenzo Librandi)
Yannis Almirantis and Wentian Li, Iterative Digital Reversion: a simple algorithm deploying a complex phenomenology related to the '1089 effect', ResearchGate, 2024. See p. 17.
Martin Beech, A Computer Conjecture of a Non-Serious Theorem, Mathematical Gazette, 74 (No. 467, March 1990), 50-51.
Patrick De Geest, Palindromic Products of Integers and their Reversals
D. J. Hoey, Palintiples
D. J. Hoey, Palintiples [Cached copy]
Benjamin V. Holt, Some General Results and Open Questions on Palintiple Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 14, Paper A42, 2014.
Benjamin V. Holt, Derived Palintiple Families and Their Palinomials, arXiv:1410.2356 [math.NT], 2014.
Benjamin V. Holt, Families of Asymmetric Palintiples Constructed from Symmetric and Shifted-Symmetric Palintiples, arXiv:1412.0231 [math.NT], 2014.
Benjamin V. Holt, Finding Permutiples of a Known Base and Multiplier, arXiv:2411.10859 [math.CO], 2024. See p. 23.
L. H. Kendrick, Young Graphs: 1089 et al., arXiv:1410.0106 [math.NT], 2014.
L. H. Kendrick, Young Graphs: 1089 et al., J. Int. Seq. 18 (2015) 15.9.7.
Leonard F. Klosinski and Dennis C. Smolarski, On the Reversing of Digits, Math. Mag., 42 (1969), 208-210.
Lara Pudwell, Digit Reversal Without Apology, Mathematics Magazine, Vol. 80 (2007), pp. 129-132.
N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
N. J. A. Sloane, 2178 And All That [Local copy]
R. Webster and G. Williams, On the Trail of Reverse Divisors: 1089 and All that Follow, Mathematical Spectrum, Applied Probability Trust, Sheffield, Vol. 45, No. 3, 2012/2013, pp. 96-102.
Eric Weisstein's World of Mathematics, Reversal
FORMULA
If reverse(n) = k*n in base 10, then k = 1, 4 or 9 [Klosinski and Smolarski]. Hence A008919 is the union of A001232 and A008918. - David W. Wilson
a(n) = 99*A061852(n). - M. F. Hasler, Oct 17 2022
MATHEMATICA
Reap[ Do[ If[ Reverse[ IntegerDigits[n]] == IntegerDigits[4*n], Print[n]; Sow[n]]; If[ Reverse[ IntegerDigits[n + 11]] == IntegerDigits[9*(n + 11)], Print[n + 11]; Sow[n + 11]], {n, 78, 2*10^10, 100}]][[2, 1]] (* Jean-François Alcover, Jun 19 2012, after David W. Wilson, assuming n congruent to 78 or 89 mod 100 *)
okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[ Flatten[ {99#, 198#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0, 1}, n], okQ], {n, 10}]]]] (* Harvey P. Dale, Jul 03 2013 *)
PROG
(Haskell)
a008919 n = a008919_list !! (n-1)
a008919_list = [x | x <- [1..],
let (x', m) = divMod (a004086 x) x, m == 0, x' > 1]
-- Reinhard Zumkeller, Feb 03 2012
CROSSREFS
KEYWORD
nonn,base,nice,changed
AUTHOR
EXTENSIONS
Corrected and extended by David W. Wilson Aug 15 1996, Dec 15 1997
STATUS
approved