login
A214927
Number of n-digit numbers N that do not end with 0 and are such that the reversal of N divides N but is different from N.
31
0, 0, 0, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 16, 16, 26, 26, 42, 42, 68, 68, 110, 110, 178, 178, 288, 288, 466, 466, 754, 754, 1220, 1220, 1974, 1974, 3194, 3194, 5168, 5168, 8362, 8362, 13530, 13530, 21892, 21892, 35422, 35422, 57314, 57314, 92736, 92736, 150050, 150050, 242786, 242786, 392836, 392836, 635622, 635622
OFFSET
1,4
COMMENTS
For the actual numbers, see A031877 and their reversals in A008919. See especially the comments in A008919.
REFERENCES
W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays, Macmillan, New York, 1939, page 13; Dover, New York, 13th ed. 1987, pp. 14-15.
H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions D'Organisation, Paris, 1984.
Heinrich Dörrie, Mathematische Miniaturen, Ferdinand Hirt, Breslau, Germany, 1943; see pages 337-339.
M. Gardner, Mathematical Magic Show, Vintage Books, 1978, pp. 203, 204, 211, 212.
C. A. Grimm and D. W. Ballew, Reversible multiples, J. Rec. Math. 8 (1975-1976), 89-91.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, London, 1986, Entry 1089.
LINKS
Yuhong Guo, Some Identities for Palindromic Compositions Without 2's, Journal of Mathematical Research with Applications 38.2 (2018): 130-136.
G. H. Hardy, A Mathematician's Apology, Cambridge Univ. Press, 1940, reprinted 2000, pp. 24-25.
J. Jonesco (proposer), E.-N. Barisien and [no initials given] Welsch (solvers), Problem 1622, L'Intermédiaire des mathématiciens, VI (1899), p. 200; L'Intermédiaire des mathématiciens, XV (1908), pp. 132-133, pp. 278-279 (in French).
T. J. Kaczynski, Note on a Problem of Alan Sutcliffe, Math. Mag., 41 (1968), 84-86.
Leonard F. Klosinski and Dennis C. Smolarski, On the Reversing of Digits, Math. Mag., 42 (1969), 208-210.
Lara Pudwell, Digit Reversal Without Apology, Mathematics Magazine, Vol. 80 (2007), pp. 129-132. Also arXiv:math/0511366 [math.HO], 2005-2006.
N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
Alan Sutcliffe, Integers That Are Multiplied When Their Digits Are Reversed, Mathematics Magazine, 39 (1966), 282-287.
Anne Ludington Young, k-Reverse multiples, Fib. Q., 30 (1992), 126-132.
Anne Ludington Young, Trees for k-reverse multiples, Fib. Q., 30 (1992), 166-174.
FORMULA
a(n) = 2*Fibonacci(floor((n-2)/2)) = 2*A103609(n-2), for n > 1.
G.f.: 2*x^4*(1+x) / (1-x^2-x^4). - Colin Barker, Dec 31 2013
EXAMPLE
The smallest examples of such numbers are 8712 and 9801 (so a(n)=0 for n < 4, a(4) = 2); 87912 and 98901 (so a(5) = 2); and 879912 and 989901 (so a(6) = 2).
MATHEMATICA
Join[{0}, Table[2 Fibonacci[Floor[(n-2)/2]], {n, 2, 60}]] (* Vincenzo Librandi, Jun 18 2013 *)
PROG
(Magma) [0] cat [2*Fibonacci(Floor((n-2)/2)): n in [2..60]]; // Vincenzo Librandi, Jun 18 2013
(SageMath)
def A214927(n): return 2*(fibonacci((n-2)//2) -int(n==1))
[A214927(n) for n in range(1, 71)] # G. C. Greubel, Oct 23 2024
KEYWORD
nonn,base,easy,changed
AUTHOR
EXTENSIONS
Formula, more terms and additional references and links from N. J. A. Sloane, Mar 11 2013
STATUS
approved