login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033687 Theta series of hexagonal lattice A_2 with respect to deep hole divided by 3. 50
1, 1, 2, 0, 2, 1, 2, 0, 1, 2, 2, 0, 2, 0, 2, 0, 3, 2, 0, 0, 2, 1, 2, 0, 2, 2, 2, 0, 0, 0, 4, 0, 2, 1, 2, 0, 2, 2, 0, 0, 1, 2, 2, 0, 4, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 3, 2, 2, 0, 2, 0, 0, 0, 2, 3, 2, 0, 0, 2, 2, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 4, 0, 0, 1, 4, 0, 0, 2, 2, 0, 2, 0, 2, 0, 1, 2, 0, 0, 4, 2, 2, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

a(n)=0 if and only if A000731(n)=0 (see the Han-Ono paper). - Emeric Deutsch, May 16 2008

Number of 3-core partitions of n (denoted c_3(n) in Granville and Ono, p. 340). - Brian Hopkins, May 13 2008

Denoted by g_1(q) in Cynk and Hulek in Remark 3.4 on page 12 (but not explicitly listed).

This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.35) and (32.351).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)

J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012) see page 697.

S. Cynk and K. Hulek, Construction and examples of higher-dimensional modular Calabi-Yau manifolds, arXiv:math/0509424 [math.AG], 2005-2006.

Andrew Granville and Ken Ono, Defect Zero p-blocks for Finite Simple Groups, Transactions of the American Mathematical Society, Vol. 348 (1996), pp. 331-347.

G.-N. Han and Ken Ono, Hook lengths and 3-cores

J. Lovejoy and O. Mallet, n-color overpartitions, twisted divisor functions, and Rogers-Ramanujan identities, South East Asian J. Math. Math. Sci., 6 (2008), 23-36. [From Jeremy Lovejoy, Jun 12 2009]

G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Euler transform of period 3 sequence [1, 1, -2, ...].

Expansion of q^(-1/3) * eta(q^3)^3 / eta(q) in powers of q.

a(4*n + 1) = a(n). - Michael Somos, Dec 06 2004

a(n) = b(3*n + 1) where b(n) is multiplicative and b(p^e) = 0^e if p = 3, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6). - Michael Somos, May 20 2005

Given g.f. A(x), B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - 2*u*w^2 - v^3. - Michael Somos, Dec 06 2004

Given g.f. A(x), B(q)= q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3^2 + u1*u6^2 - u1*u3*u6 - u2^2*u3. - Michael Somos, May 20 2005

Given g.f. A(x), B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2*u3^2 + 2*u2*u3*u6 + 4*u2*u6^2 - u1^2*u6. - Michael Somos, May 20 2005

G.f.: Product_{k>0} (1 - x^(3*k))^3 / (1 - x^k).

G.f.: Sum_{k in Z} x^k / (1 - x^(3*k + 1)) = Sum_{k in Z} x^k / (1 - x^(6*k + 2)). - Michael Somos, Nov 03 2005

Expansion of q^(-1) * c(q^3) / 3 = q^(-1) * (a(q) - b(q)) / 9 in powers of q^3 where a(), b(), c() are cubic AGM theta functions. - Michael Somos, Dec 25 2007

G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A005928.

a(n) = Sum_{d|3n+1} LegendreSymbol{d,3} - Brian Hopkins, May 13 2008

q-series for a(n): Sum_{n >= 0} q^(n^2+n)(1-q)(1-q^2)...(1-q^n)/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n+1))). [From Jeremy Lovejoy, Jun 12 2009]

a(n) = A002324(3*n + 1). 3*a(n) = A005882(n) = A033685(3*n + 1). - Michael Somos, Apr 04 2003

G.f.: (2 * psi(x^2) * f(x^2, x^4) + phi(x) * f(x^1, x^5)) / 3 where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 07 2018

EXAMPLE

G.f. = 1 + x + 2*x^2 + 2*x^4 + x^5 + 2*x^6 + x^8 + 2*x^9 + 2*x^10 + 2*x^12 + 2*x^14 + ...

G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 2*q^19 + q^25 + 2*q^28 + 2*q^31 + 2*q^37 + ...

MATHEMATICA

a[ n_] := If[ n < 0, 0, DivisorSum[ 3 n + 1, KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Sep 23 2013 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Sep 01 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, sumdiv( 3*n + 1, d, kronecker( -3, d)))}; /* Michael Somos, Nov 03 2005 */

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / eta(x + A), n))};

(PARI) {a(n) = my(A, p, e); if( n<0, 0, A = factor( 3*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%6==1, e+1, 1-e%2)))}; /* Michael Somos, May 06 2015 */

(MAGMA) Basis( ModularForms( Gamma1(9), 1), 316) [2]; /* Michael Somos, May 06 2015 */

CROSSREFS

Cf. A000731, A002324, A005882, A006938, A033685.

Cf. A045831, A053723, A081622.

Sequence in context: A068907 A219762 A227696 * A263452 A133457 A324120

Adjacent sequences:  A033684 A033685 A033686 * A033688 A033689 A033690

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 08:25 EDT 2019. Contains 323389 sequences. (Running on oeis4.)