login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065359 Alternating bit sum for n: replace 2^k with (-1)^k in binary expansion of n. 20
0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, -2, -1, -3, -2, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Notation: (2)[n](-1)

Comments from David W. Wilson and Ralf Stephan, Jan 09 2007: (Start)

a(n) is even iff n in A001969; a(n) is odd iff n in A000069.

a(n) == 0 (mod 3) iff n == 0 (mod 3).

a(n) == 0 (mod 6) iff (n == 0 (mod 3) and n/3 not in A036556).

a(n) == 3 (mod 6) iff (n == 0 (mod 3) and n/3 in A036556). (End)

a(n) = A030300(n) - A083905(n). - Ralf Stephan, Jul 12 2003

First occurrence of k and -k: 0, 1, 2, 5, 10, 21, 42, 85, ..., (A000975), i.e.; first 0 occurs for 0, first 1 occurs for 1, first -1 occurs at 2, first 2 occurs for 5, etc....,

a(n)=-3 only if mod(n,3)=0,

a(n)=-2 only if mod(n,3)=1,

a(n)=-1 only if mod(n,3)=2,

a(n)= 0 only if mod(n,3)=0,

a(n)= 1 only if mod(n,3)=1,

a(n)= 2 only if mod(n,3)=2,

a(n)= 3 only if mod(n,3)=0, ..., .

a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - From Philippe Deléham, Oct 20 2011.

REFERENCES

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,1000

J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II

William Paulsen, wpaulsen(AT)csm.astate.edu, Partitioning the [prime] maze

R. Stephan, Divide-and-conquer generating functions. I. Elementary sequences

R. Stephan, Some divide-and-conquer sequences ...

R. Stephan, Table of generating functions

FORMULA

G.f.: 1/(1-x) * sum(k>=0, (-1)^k*x^2^k/(1+x^2^k)). - Ralf Stephan, Mar 07 2003

a(0) = 0, a(2n) = -a(n), a(2n+1) = 1-a(n). - Ralf Stephan, Mar 07 2003

a(n)=Sum_k>=0 {A030308(n,k)*(-1)^k}. - From Philippe Deléham, Oct 20 2011.

EXAMPLE

Alternating bit sum for 11 = 1011 in binary is 1 - 1 + 0 - 1 = -1, so a(11) = -1.

MAPLE

A065359 := proc(n) local dgs ; dgs := convert(n, base, 2) ; add( -op(i, dgs)*(-1)^i, i=1..nops(dgs)) ; end proc: # R. J. Mathar, Feb 04 2011

MATHEMATICA

f[0]=0; f[n_] := Plus @@ (-(-1)^Range[ Floor[ Log2@ n + 1]] Reverse@ IntegerDigits[n, 2]); Array[ f, 107, 0]

PROG

(PARI) SumAD(x)= { local(a=1, s=0); while (x>9, s+=a*(x-10*(x\10)); x\=10; a=-a); return(s + a*x) } baseE(x, b)= { local(d, e=0, f=1); while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) } { for (n=0, 1000, b=baseE(n, 2); write("b065359.txt", n, " ", SumAD(b)) ) } [From Harry J. Smith, Oct 17 2009]

(PARI) for(n=0, 106, s=0; u=1; for(k=0, #binary(n)-1, s+=bittest(n, k)*u; u=-u); print1(s, ", ")) /* W. Bomfim, Jan 18 2011 */

CROSSREFS

Cf. A000120, A065360, A065368, A065081.

Partial sums seem to be in A005536.

Sequence in context: A117355 A086966 A140080 * A087372 A036431 A029407

Adjacent sequences:  A065356 A065357 A065358 * A065360 A065361 A065362

KEYWORD

base,easy,sign

AUTHOR

Marc LeBrun, Oct 31 2001

EXTENSIONS

More terms from Ralf Stephan, Jul 12 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 00:39 EST 2014. Contains 252175 sequences.