login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2.
(Formerly M2322 N0917)
181
1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003

This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004

These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.

a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006

Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007

Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008

The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010

With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given.  This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011

Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013

REFERENCES

M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139-151.

L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.

I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.

P. J. Downey and R. E. Griswold, On a family of nested recurrences, Fib. Quart., 22 (1984), 310-317.

A. S. Fraenkel, The bracket function and complementary sets of integers, Canad. J. Math., 21 (1969), 6-27. [History, references, generalization]

A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=1).

M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.

David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.5.

A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, pp. 513-514.

M. Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, 118 (2011), 497-507.

H. Grossman, A set containing all integers, Amer. Math. Monthly, 69 (1962), 532-533.

Clark Kimberling, Complementary equations and Wythoff sequences, Journal of Integer Sequences 11 (2008, Article 08.3.3) 1-8.

Clark Kimberling, Complementary Equations, Journal of Integer Sequences, 10 (2007), Article 07.1.4.

D. J. Newman, Problem 5252, Amer. Math. Monthly, 72 (1965), 1144-1145. Problem 3117, Amer. Math. Monthly, 34 (1927), 158-159.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

K. B. Stolarsky, Beatty sequences, continued fractions and certain shift operators, Canad. Math. Bull., 19 (1976), 473-482.

X. Sun, Wythoff's sequence ..., Discr. Math., 300 (2005), 180-195.

J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., 27 (1989), 76-86.

I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

LINKS

N. J. A. Sloane, The first 10000 terms

J.-P. Allouche, J. Shallit and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.

Joerg Arndt, Fxtbook, pp.756-757

Shiri Artstein-Avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty, Discr. Math. 308 (2008), 4578-4588.

Shiri Artstein-avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discrete Math., 308 (2008), 4578-4588.

E. J. Barbeau, J. Chew and S. Tanny, A matrix dynamics approach to Golomb's recursion, Electronic J. Combinatorics, #4.1 16 1997.

B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.

B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)

A. S. Fraenkel, Ratwyt, December 28 2011.

C. Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, 3 (2000), #00.2.8.

C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.

Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol 49, Number 2, May 2011.

N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).

N. J. A. Sloane, Classic Sequences

Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, Arxiv preprint arXiv:1205.0596, 2012. - N. J. A. Sloane, Oct 13 2012

Eric Weisstein's World of Mathematics, Beatty Sequence

Eric Weisstein's World of Mathematics, Golden Ratio

Eric Weisstein's World of Mathematics, Rabbit Constant

Eric Weisstein's World of Mathematics, Wythoff's Game

Eric Weisstein's World of Mathematics, Wythoff Array

Index entries for sequences related to Beatty sequences

Index entries for sequences of the a(a(n)) = 2n family

FORMULA

Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.

Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in sequence".

a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in sequence, a(n+1) = a(n)+2 if n is in sequence.

a(a(n)) = floor[n*phi^2] - 1 = A003622(n).

{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08, 2003

{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).

a(n) = A001950(n) - n . - Philippe Deléham, May 02 2004

a(0) = 0; a(n) = n + max{ k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004

a(n) = floor(n*phi). a'(n) = floor(n*phi^2) = A001950(n).

  a(Fib(r-1)+j) = Fib(r)+a(j) for 0<j<=Fib(r-2); 2<r.

  a'(Fib(r-2)+j) = Fib(r)+a'(j) for 0<j<=Fib(r-2); 3<r.

  - Paul Weisenhorn, Aug 18 2012

With a(1)=1; a'(1)=2; a(2)=3; a'(2)=5  and

  1 < k and a'(k-1) < n <= a'(k) = A001950(k)

  a(n) = 2*n-k; a'(n) = 3*n-k;

  - Paul Weisenhorn, Aug 21 2012

EXAMPLE

Contribution from Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)

Example for n = 5; a(5) = 8

(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):

[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1] (End)

Contribution from Paul Weisenhorn, Aug 18 2012: (Start)

  a(14)=floor(14*phi)=22; a'(14)=floor(14*phi^2)=36;

  with r=8 and j=1: a(13+1)=21+1=22;

  with r=9 and j=1: a'(13+1)=34+2=36; (End)

Contribution from Paul Weisenhorn, Aug 21 2012: (Start)

  k=6; a'(5)=13 < n <= a'(6)=15

  a(14)=2*14-6=22; a'(14)=3*14-6=36;

  a(15)=2*15-6=24; a'(15)=3*15-6=39; (End)

MAPLE

Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);

MATHEMATICA

Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]

Array[ Floor[ #*GoldenRatio] &, 68] - (* Robert G. Wilson v, Apr 17 2010 *)

PROG

(PARI) a(n)=floor(n*(sqrt(5)+1)/2)

(PARI) a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013

(Maxima) makelist(floor(n*(1+sqrt(5))/2), n, 1, 60); [Martin Ettl, Oct 17 2012]

(Haskell)

a000201 n = a000201_list !! (n-1)

a000201_list = filter (even . length . takeWhile (== 0) . a213676_row) [1..]

-- Reinhard Zumkeller, Mar 10 2013

CROSSREFS

a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.

The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).

First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003.

A185615 gives values n such that n divides A000201(n)^m for some integer m>0.

Cf. A183110.

Sequence in context: A085270 A090908 A066096 * A000202 A188035 A026339

Adjacent sequences:  A000198 A000199 A000200 * A000202 A000203 A000204

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Mathematica coding shortened by Robert G. Wilson v, Apr 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 06:50 EDT 2014. Contains 240550 sequences.