This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027927 Number of plane regions after drawing (in general position) a convex n-gon and all its diagonals. 5
 1, 2, 5, 12, 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, 1926, 2501, 3197, 4030, 5017, 6176, 7526, 9087, 10880, 12927, 15251, 17876, 20827, 24130, 27812, 31901, 36426, 41417, 46905, 52922, 59501, 66676, 74482, 82955, 92132, 102051, 112751, 124272, 136655, 149942, 164176, 179401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..10000 Lapo Cioni and Luca Ferrari, Enumerative Results on the SchrÃ¶der Pattern Poset, In: Dennunzio A., Formenti E., Manzoni L., Porreca A. (eds) Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, Lecture Notes in Computer Science, vol 10248. Dairyko, Michael; Tyner, Samantha; Pudwell, Lara; Wynn, Casey. Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From N. J. A. Sloane, Feb 01 2013 M. Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = T(n, 2*n-4), T given by A027926. a(n) = 1 + binomial(n, 4) + binomial(n-1, 2) = (n^4 - 6*n^3 + 23*n^2 - 42*n + 48)/24. G.f.: x^2*(1 -3*x +5*x^2 -3*x^3 +x^4)/(1-x)^5. - Colin Barker, Jan 31 2012 a(n) = (1/6)*A152950(n-1)*A152948(n). - Bruno Berselli, Jan 31 2012 a(n) = A000217(A000217(n)+2)/3, a(n+1) - a(n) = A004006(n-1) for n > 2. - Waldemar Puszkarz, Jan 22 2016 EXAMPLE a(2)=1 (segment traced twice has only exterior). MAPLE seq((n^4 -6*n^3 +23*n^2 -42*n +48)/24, n=2..50); # G. C. Greubel, Sep 06 2019 MATHEMATICA LinearRecurrence[{5, -10, 10, -5, 1 }, {1, 2, 5, 12, 26}, 50] (* Vincenzo Librandi, Feb 01 2012 *) S[n_] :=n*(n+1)/2; Table[S[S[n]+2]/3, {n, 0, 50}] (* Waldemar Puszkarz, Jan 22 2016 *) PROG (PARI) a(n)=n*(n^3-6*n^2+23*n-42)/24+2 \\ Charles R Greathouse IV, Jan 31 2012 (MAGMA) [(n^4 -6*n^3 +23*n^2 -42*n +48)/24: n in [2..50]]; // G. C. Greubel, Sep 06 2019 (Sage) [(n^4 -6*n^3 +23*n^2 -42*n +48)/24 for n in (2..50)] # G. C. Greubel, Sep 06 2019 (GAP) List([2..50], n-> (n^4 -6*n^3 +23*n^2 -42*n +48)/24); # G. C. Greubel, Sep 06 2019 CROSSREFS Cf. A006522 (does not count exterior of n-gon). Cf. A000045, A000217, A004006, A027926, A228074. Sequence in context: A221720 A258099 A132977 * A221948 A116717 A116725 Adjacent sequences:  A027924 A027925 A027926 * A027928 A027929 A027930 KEYWORD nonn,easy AUTHOR EXTENSIONS New name from Len Smiley, Oct 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 14:31 EDT 2019. Contains 328114 sequences. (Running on oeis4.)